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ABSTRACT High-resolution orientational constraints from solid-state NMR spectroscopy of uniformly aligned biological
macromolecules provide a great structural analysis problem. Several approaches to this problem have been made in the past.
Here a vector algebra method is developed that provides analytical solutions for the torsion angles and a concise and simple
view of the structural possibilities. Numerical instabilities in this approach are easily predicted. Insight into how the structural
ambiguities arise in the first place and how they can be reduced in number is demonstrated with this new approach.

INTRODUCTION

The advent of multidimensional techniques (Kumar and
Opella, 1991; Wu et al., 1994) and the recent determination
of a peptide's complete three-dimensional structure
(Ketchem et al., 1993, 1996a) using solid-state NMR (SS
NMR) clearly demonstrate its potential to join the ranks of
x-ray diffraction and solution NMR as another independent
method for determining protein structure. The effort to
further develop SS NMR for use on a routine basis is
important because it is naturally suited for determining
high-resolution structures of membrane proteins (Cross,
1994; Cross and Opella, 1994) and fibrous proteins (Nichol-
son et al., 1990; Simmons et al., 1996) in their native
environment. In this respect, one particularly underdevel-
oped area is structural analysis: although several methods
(Opella et al., 1987; Brenneman and Cross, 1990; Teng et
al., 1991) have been used to determine the three-dimen-
sional structure of peptides, all suffer from weaknesses that
would affect their application to proteins. A method free of
these limitations is presented here to determine the initial
structure of a polypeptide's backbone from experimental SS
NMR-derived orientational constraints.

Determining the structure of a molecule from experimen-
tal data generally involves the use of mathematical methods,
such as the Fourier transform in x-ray crystallography or
distance geometry in solution NMR. The purpose here is to
develop a mathematical method to determine the complete
structure of a protein's backbone from SS NMR data and to
define the structural ambiguities. The input data are mea-
surements from dipolar, quadrupolar, and chemical shift
interactions (Opella et al., 1987) obtained from samples that
are aligned with the direction of Bo, the fixed magnetic field
of the spectrometer. The magnitude of these interactions
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allows one to solve for the angle each covalent bond makes
with Bo, the bond's azimuthal angle. It has been shown that
by measuring roughly three interactions per peptide plane, a
unique solution for each bond's azimuthal angle can gen-
erally be obtained (Brenneman, Quine and Cross, unpub-
lished; Ketchem et al., 1996b). As Fig. 1 shows, the fixed
azimuthal angles, along with the covalent bond angles, act
as constraints on the protein's structure. Just as in solution
NMR, where the structure of a molecule is solved using
distance constraints, in solid-state NMR the structure is
solved using these angular or orientational constraints. Here
a mathematical solution is developed for the structural anal-
ysis of these data.

Using vector analysis, analytical equations for the {(4, tf}
torsion angles of the protein backbone are derived. The goal
is not just to develop an algorithm that computes a numer-
ical result for the structure from the experimental data (three
solutions of this type have already been published), but to
use mathematics to also solve a second problem: how the
structural information from the experimental data defines
the structure of a molecule. A thorough understanding of
this problem answers questions of significant practical im-
portance to the experimentalist, such as the minimum data
set needed to determine the molecule's structure, whether a
particular data set will yield a numerically stable result, how
effective a particular measurement will be in reducing the
number of possible structures, and the total number of
conformations consistent with the experimental data. It is
the ability to solve this problem that marks the passage from
simply computing numerical results to performing structural
analysis. It is also the point at which this method diverges
from those in the past.

In Materials and Methods, some basic terminology and
notation are established, an important concept called
"chirality" (following the terminology of Crippen and
Havel, 1988) is introduced, and the basic equation for any
general dihedral angle in terms of bond azimuthal angles
and chiralities is derived. In the Results section the method
is refined for solving the structure of a protein backbone.
Finally, in the Discussion section, the method is applied to
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FIGURE 1 Bond orientation and bond angle constraints. BO and b are
given unit vectors, and a b = cos tab' a Bo = cos Oa. How does this
determine the unit vector a? There are two possibilities indicated by the
intersection of the two circles. One possibility (a,) is shown above, along
with its projection (Pa,) onto the plane perpendicular to b.

a model peptide, gramicidin A, the structure of which has
already been determined by SS NMR.

MATERIALS AND METHODS

The basic tool is a formula for the torsion angle in terms of the bond
orientation cosines, the bond angle cosines, and the chiralities. Three unit
vectors, a b, c, and a unit vector, B = B,o in the direction of the field of
the spectrometer are used. The dot products of the vectors with B are given
by B * a = cos O,B * b = cos Ob, B * cos O., and are referred to as
the bond orientation cosines. The dot products fi b = cos (ab and b * c =
cos (bc are referred to as the bond angle cosines. The torsion angle,
Torsion(a, b, c), is a function, T, of seven variables:

Torsion(a, b, O)
- T(COS a' COS Ob' COS OC, COS tab' COS bcq Eab, Ebc),

where

Eab = sign B * (a X b) and Ebc = sign B * (b X c)
are chiralities that cannot be determined from the bond orientation and
bond angle cosines.

In the subsections below, the framework for understanding and using
this formula is described. The role of chiralities in determining the ambi-
guities in this torsion angle is illustrated in Figs. 1, 2, and 3.

Coordinate systems

A right-handed coordinate system is defined as an ordered triple {(, 5, 2}
of unit vectors such that x and 5 are orthogonal and 2 = x x 5. The
coordinates of any vector v in this system are (v *x, v 59, v 2).

Computations can be made easier by choosing the appropriate coordi-
nate system for the problem. A coordinate system is usually chosen in
which the first vector is a unit bond vector u. There are many possible ways
of choosing the other two vectors. Here a "ui system based on B" is a

'PA1
FIGURE 2 Projection and chirality. When Fig. 1 is projected onto the
plane perpendicular to b, two possibilities (Pal and Pf2) result. The
projections are symmetrical with respect to PBo, and the two possibilities
are distinguished by the sign of a triple product (a chirality): b - (B,, X f2)
> 0, b * (Bo X a,) < 0.

convenient coordinate system for computations using bond orientation
cosines. It consists of the vectors {i, 5, 2}, where

x = u r =

B X u
(1)

(1-(B *l)2)1/2

B - (B fu)ut
z = x A y = (

(-B .U)2)1/2
(By the formula for the length of a cross product, the vector 5 is a unit
vector.) This system can be used only if fu and B are linearly independent,
that is, if u is not equal to B or B. If i is B or- B, then 5 = 2 = 0.

In the fu system based on B, the coordinates of B are uniquely deter-
mined from the bond orientation cosines. The coordinates are (B fi, 0,
(1 -(B * u)2)1/2)

Gramians, triple products, and chirality

We review here some basic vector geometry needed in the following
sections. A good reference in general is the CRC Handbook ofMathemat-
ical Sciences (Beyer, 1987). Also see Crippen and Havel (1988) for a
discussion of gramians and chirality.

If a, b, and c are unit vectors, then la (b x c)j is given by the square
root of the determinant

1 b a-c

g(ab,c) b.a 1 bc
ca c b 1
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Pb2
three linearly independent vectors thought of as a sequence of bond
vectors, then the torsion angle can be defined as follows. Let Pa = a -

(a * b)b and Pc = c- (b *)b be the projection of a and c, respectively,
onto the plane perpendicular to b. The torsion angle at b is the angle from
-PA to Pt measured counterclockwise around b. This angle is denoted by

4 = Torsion(a, b, c).

The angle is chosen in the interval from -1800 to 1800. This angle has an

pA equivalent description as a dihedral angle between two planes. In our
0o application, the vectors will be along consecutive bonds pointing in the

same direction along the backbone of a protein.

FIGURE 3 Chirality and torsion. The torsion angle, Torsion(a, 6, c), is
the angle from -Pa to PE, where P is the projection onto the plane
perpendicular to b, as in Fig. 2. With two possible values for a and c,
distinguished by chirality, there are four possible values for the torsion
angle. There are two pairs, one the negative of the other.

This determinant is referred to as the gramian or the metric matrix. Because
the vectors are unit vectors, each entry can be written as the cosine of the
angle between vectors. The determinant is evaluated,

g(a^, b, c) = 1 - (a b) aC - (b-* c

+ 2(a*b)(a*c)(b - c)

= y(^ ,
^ Z b

where y denotes the function in the variables x, y, and z given by

y(X, y, z) = 1 - 2- - z2 + 2xyz. (2)
Note that this function is unchanged by permutation of the variables.

The matrix in the gramian above can be written as the product of a
matrix and its transpose, where the rows of the matrix are the coordinates of
a, 6, and c in a right-handed coordinate system. The gramian is the square of
the determinant of this matrix. Thus for the triple product, 1a * (6 X Z)12 =
-AA b, a E, b c) or a - (b Xc>) = EV'y(A 6, a c, 6 . where E =

sign(a * (b x c)) is the chirality of this ordered triple of vectors. The important
thing to note here is that the absolute value of the gramian is a function of the
three dot products (or cosines).

The gramian has a useful interpretation in terms of spherical trigonom-
etry. If T is the angle between the arcs a to b and a to c on the unit sphere,
then

g(a, b, c) = (1- (a* b)2)(1 - (I . )2)(I - cos2 T)
The nonnegativity of the gramian is an important observation in deter-

mining bond orientation cosines from second-order tensor data (Opella
et al., 1987, figure 9, A, B; Brenneman and Cross, 1990). In general,
,y(x, y, z) can be negative for lxl ' 1, IYI C 1, and lzl ' 1, for example,
y(l, 1, 0) = -1, so the nonnegativity of y distinguishes triples of dot
products that can occur for three vectors in Euclidean space.

The torsion angle formula

In this section a derivation for the torsion angle formula as a function of
bond orientation cosines and bond angle cosines is given. If a, b, and c are

Suppose that bond angle cosines cos Oa, cos Ob, and cos O, are known
and the expression for torsion angles is given in terms of bond orientation
cosines and two chiralities. The bond orientation sines sin Oa, sin Ob, and sin
Oc can be computed from the bond orientation cosines using sin 0 = (I -
cos20)1"2. Similarly, the bond angle sines, sin (ab and sin 6, can be
computed. Because bond angles and bond orientation angles are defined to
be in the interval from 0° to 1800, the sine of these angles is always
nonnegative. Now the triple products are computed from the gramians:

B * (a x b) =Eab g(B, a, b),

B ,b
A A

B - (b X ) =EbC g(B, ).

Define a., Oa, ac, and ,c by

(aa, 13a) = - (B X b), cos Oa - COS ObCOS ab)

= (B (a X b), -COS Oa + COS Ob COS tab)

(ac, c) = (c (B X b), cos Oc - Cos Ob COS bc

= (B* (b x c), cos Oc - cos Ob cos4CJ)
In the coordinate system at b of vectors

1 1
=b, y sin bBX b, z= (B-cos Obb),

the projections of A and c on the plane perpendicular to b are easily
computed as

Pa= i (}aS + t3a)

sin Ob

Now the torsion angle 4) is the angle from -PA to Pb measured counter-
clockwise around b. Hence,

cos 4 = , sign 4 = signb- (Pc x Pa).

Noting that |Pal = sin (ab and IPc| = sin 46, it follows that the torsion
angle is given by

4 = Torsion(a, b, c)

= sign(acg3 - aaI3c)arCCos(5n2 aaac +nga c)9 sin' Obsi &bsin&ab
(Sign 0 should be defined to be 1.) Note that all quantities in the formula
except for Eab and Eb,, can be computed in terms of the bond angle cosines
and the bond orientation cosines. The formula would be too long if written

(3)
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only in terms of these, so intermediate variables have been used. Thus the
torsion angle formula above is a function

4) = T(COS Oa, COS Ob, COS OC COS tab' COS &bc Eab, Ebc).

Note certain symmetries in the formula for 4. If the sign of both e1 and E2
is changed, then the sign of 4 is changed. If the sequence of vectors is
reversed, then the angle 4) is unchanged. If the sign is changed on all bond
orientation cosines, then the sign of 4 is changed. Also note that by
definition of the torsion angle,

Torsion(a, b, c) + Torsion(c, b, d) = Torsion(a, b, d).
(4)

Numerical stability
It was noted that the coordinate system at b is undefined if 6 B or
b = -B. This is reflected in the Eq. 3 by the vanishing of sin 0b in the
denominator. The formula is numerically unstable, then, if B and b are
approximately parallel. In this situation, the two circles in Fig. I would be
close to being the same circle and the intersection points would not be well
defined.

Numerical instability also occurs in the computation of the torsion angle
in the following situations:

1. when g(i, f b) =0, i.e., when Bi, , and b are in the same plane,
2. when g(B, b, b) = 0, i.e., when B, a, and b are in the same plane.

(Note that if B and b are parallel, then both of these situations occur.) In
these situations there is a well-defined solution for the torsion angle, but
because d§ = dg/2\/g is infinite, a small change in g will result in a
large one for \/9 and the computation is unstable. Here the circles in Fig.
1 would be tangent to one another with only one intersection point. A small
change in the circles will result in a large change in the location of the
intersection points. This type of situation arises for real proteins. In the case
of oriented silk fibers (Nicholson et al., 1990), the B field is found to lie
roughly in the plane of a and c', and as a result any equation for the torsion
angle will give unstable results. A possible solution to this problem is to
use bond orientation information for an out-of-plane bond such as the C,-H
bond, d, and then compute a torsion angle where this bond is one of the
vectors. Another possibility for molecules without axial rotation is to tip
the samples in the spectrometer so that B will no longer be in the plane.

RESULTS

The torsion angle formula will now be applied to the ge-
ometry of a dipeptide, two adjacent peptide planes.

Planes and unit bond vectors

Unit bond vectors are denoted as in Table 1.
The vectors c, fi, a, h are assumed to be in the same plane,

the peptide plane. Primed vectors indicate vectors in the
subsequent peptide plane (see Fig. 4). The geometry of the
peptide plane bonds and the bonds to the C. carbons are

TABLE 1 Unit bond vectors in a peptide plane

Unit vector Chemical bond

C C,-C'
n C'-N

h N-H
d C_-D

determined approximately by the following dot products
(Engh and Huber, 1991):

c a = cos 6 c n=cos 75°

ch cos123 a -c' 1/3 = cos 70°

n-a = cos590 h-'a= cos 1170

nih=cos580 d-a= 1/3

d c'-l"" /3 =cosllO°0,

using the notation for bond angle, for example, (ch = 1230.
Note that d * (c' X a) < 0 at a C. in an L amino acid and
d * (c' X a) > 0 at a C. in a D amino acid.

In this paper it is assumed that bond orientation data are
known, i.e., that B - u is known for all unit bond vectors 'u.
For bonds in a peptide plane, if the dot product with B for
two linearly independent vectors in the plane is known, then
the dot product with B can be compul A for all vectors in the
plane.

Computation of C. torsion angles

The 4 and ql angles at an a carbon bond are defined by

4 = Torsion(fi, a, c')

+ = Torsion(a, c' ni')

The following chiralities are also defined:

El = sign(B - (n X a))

E, = sign(B (a>X '))

E3 = sign(B (c' X ni'))

=-sign(B * (n' X a')).

The chirality E1 will be defined to be the chirality of the
peptide plane containing the unit bond vectors fn and i. The
chirality E2 will be defined as the chirality of the a carbon
containing the unit bond vectors a and c'. Using the formula
above,

(5)

For the problem of two adjacent peptide planes, there are
three chiralities, giving eight possible pairs of dihedral
angles. For a polypeptide there are chiralities to be deter-
mined for each peptide plane (determined by vectors n' and
a) and a carbon plane (determined by vectors a and c').
Thus the number of possible structures from a given set of
bond orientation cosines, two for each peptide plane, is
22n 1, where n is the number of peptide planes. The number
2n - 1 represents the number of peptide planes, n, plus the
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FIGURE 4 Unit bond vectors in adja-
cent peptide planes.

number of a carbons, n - 1. If data are available for bonds
not in a peptide plane, such as the Cay-D bond, then some
of the chiralities for a carbon planes can be determined,
reducing the number of possibilities. An example of this is
given in the Discussion section.

Using Eq. 4,

4 = Torsion(nf, a, B) + Torsion(B, a, c')

- Torsion(nf, a, c'),

and this formula can be used to derive equation 13 in Teng
et al. (1991). The sign ambiguities in the latter can now be
explained in terms of chiralities, i.e., signs of triple products
of vectors.

DISCUSSION

Gramicidin A

By using gramicidin A as an example, it is shown how the
structure is affected by the choice of chiralities. Consider
the following sample data in Table 2 (Ketchem et al., 1993).
The components B * h, B - n, and B - d are obtained from
experimental data, and the B * a and B * c components are
obtained from these using the geometry of the peptide plane
as above (Planes and unit bond vectors). The assumption is
made that the n torsion angles are 1800. The equations
relating the unit bond vectors in the plane are '=
-1.01h + 1.05 nf and c =-1.06h + 0.99fi. Vectors h, n, a,
c in Table 2 are those associated with the peptide plane
containing the 15N of the identified residue. The value of
B *d at the Gly site is taken to be consistent with alternating
D and L residues.

Obtaining the data in Table 2 requires elucidating some
ambiguities distinct from the ones due to chirality studied
here. They arise from the fact that tensors are invariant upon
replacing B by -B. Consequently, even after considering
data from 15N chemical shift, N-H and N-C' dipolar
tensors, (B n, B h) is indistinguishable from (-B * fi,
-B * h). This is resolved by looking at Ca-D quadrupolar
splittings (Ketchem et. al., 1996b). A table of values for

TABLE 2 Bond orientation cosines for gramicidin A obtained
from SS NMR data

Residue B*h -B*n B a B * c B * d

Val -0.96 0.45 0.49 0.58 0.95
Gly 0.92 -0.75 -0.13 -0.23 -0.93
Ala -0.98 0.4 0.58 0.66 0.94
D-Leu 0.92 -0.74 -0.15 -0.25 -0.93
Ala -0.98 0.43 0.54 0.62 0.93
D-Val 0.93 -0.71 -0.19 -0.29 -0.92
Val -0.98 0.43 0.54 0.62 0.94
D-Val 0.92 -0.73 -0.17 -0.27 -0.9
Trp -0.99 0.44 0.54 0.62
D-Leu 0.88 -0.72 -0.14 -0.23 -0.94
Trp -0.99 0.48 0.49 0.58
D-Leu 0.89 -0.74 -0.13 -0.23 -0.95
Trp -0.98 0.46 0.5 0.59
D-Leu 0.86 -0.72 -0.12 -0.21 -0.94
Trp -0.97 0.45 0.51 0.6
Eam 0.86 -0.72 -0.12 -0.21

Eam, Ethanolamine blocking group at the carboxyl tenninus.

B * n and B * h is obtained for each monomer. Table 2 is for
the monomer with the N terminal-to-C terminal axis in the
same direction as B.

For this monomer the C. chiralities, sign B * (a X c'), are
all + 1. This is apparent from Table 2 and the following
calculation. Recall that the C,aD direction is denoted d.
The formula

d .B d ai d c'
(d *(a X c'))(B *(a X c'))= a *B 1 ac'

c' B c' a 1

follows from writing the left-hand side as the product of
determinants and using the formula det AB = det A det B
(Beyer, 1987). Now the alternating stereochemistry of
amino acid residues in gramicidin, L, D, L. . ., shows that
the triple product d - (a X c') alternates in sign, +, -,
+,.... (Its absolute value is about 4/(3V3).) Computation
of the determinant on the right at the C, sites where B - d
is known indicates that the sign alternates, +,-, ±....
Thus (B - (a X c')) is positive and the Ca plane chiralities
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are all + 1. This is the same as it would be for a right-handed
a-helix, with the axis pointing in the direction of the mag-
netic field.
A sequence of torsion angles can be generated from the

data by using Eq. 5 and a chosen chirality for each peptide
and Ca plane. There are 216 possible sequences of peptide
plane chiralities to consider for gramicidin. The data are
periodic, reflecting a (-sheet type of a structure with a
period of two peptide planes. If it is assumed that the
chiralities are likewise periodic, then the number of possible
chirality sequences reduces to 4.

Taking alternate signs for the peptide plane chiralities,
-1, 1,-1, . . ., torsion angles 'k and ij' in Table 3 result,
and if the peptide plane chiralities are all -1, the torsion
angles 42 and 4f2 in Table 3 result from the formula above
(The torsion angle formula). Additional possibilities are + 1,
- 1, + 1, . . ., and all peptide plane chiralities + 1. These
structures are also referred to (Ketchem et al., 1996a) as
g2328, g2424, g2823, and g2727, respectively. The folding
motif (i.e., hydrogen-bonding pattern) is the same for each
of these possibilities. This is because the direction of the
helix axis, and hence the direction of B, is less than about
15° out of each peptide plane. Thus the virtual C,a-Ca bond
vector is little affected by choosing the opposite chirality.
These four torsion angle solution sets are a representative
set of initial structures, and refinement against all experi-
mental constraints and the CHARMM force field of all four
of these leads to the same final structure and a unique set of
chiralities independent of the chiralities used in the initial
structure (Ketchem, 1995).
What pattern of chiralities should be expected from other

peptides? For an ideal a-helix, with chiralities as defined
here, if the direction of the magnetic field is in the direction
of the helix axis, the chiralities are all -1. This is because
for a regular helix the helix axis, A, is oriented in each
peptide plane such that A * (nf X a) is negative, with the
C- O bond pointing away from the axis, or "out."

TABLE 3 Torsion angles for gramicidin A for peptide plane
chiralities -1, +1, -1, . . (41 and 4'l) and for chiralities -1,
-1, -1,. ..., (42 and t2)

Residue 4'41 02 &12

1 -139 141 -139 114
2 125 -109 151 -109
3 -134 153 -134 119
4 119 -102 152 -102
5 -142 152 -142 118
6 122 -111 154 -111
7 -136 150 -136 116
8 118 -103 151 -103
9 -134 153 -134 106
10 107 -97 153 -97
11 -135 146 -135 108
12 114 -100 151 -100
13 -135 153 -135 105
14 110 -100 157 -100
15 -137 154 -137 107

CONCLUSIONS

With high-resolution solid-state NMR it is necessary to
have a structural analysis method such as described here to
take full advantage of the unique data. Presented here is a
structural analysis method based on vector algebra that
provides analytical torsion angle solutions from solid-state
NMR-derived orientational constraints. The assumption is
made that all of the wt torsion angles are 1800. The resulting
ambiguities, termed "chiralities," are described in such a
way that a concise and simple view of the structural possi-
bilities is developed. Each sequence of chiralities represents
a specific analytical solution for the experimental data. In
other words, the data are not consistent with the full range
of torsion angles between the structural possibilities, such as
those in Table 3.
The torsion angle solution is unstable in some situations,

but these are anticipated to be rare throughout a helical
protein structure, and therefore it should have little conse-
quence for this structural method. The chirality ambiguities
have no influence on the hydrogen-bonding pattern, helical
parameters, and hence polypeptide fold in gramicidin. This
is due to the fortunate situation that a change in chirality
does not greatly affect the direction of the C,a,-C axis in
either a 13-helix or an a-helix that is aligned parallel to the
magnetic field direction. It is anticipated that defining the
chiralities in molecules where the helical axis is not aligned
with the field may be easier experimentally than when it is
parallel. Current research in our laboratory will clarify this
point.

This work has been supported by the National Science Foundation, DMB
9317111, to TAC, and by a Florida State University COFRS grant to JRQ.
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