
Consistent blind protein structure generation
from NMR chemical shift data
Yang Shen*, Oliver Lange†, Frank Delaglio*, Paolo Rossi‡, James M. Aramini‡, Gaohua Liu‡, Alexander Eletsky§,
Yibing Wu§, Kiran K. Singarapu§, Alexander Lemak¶, Alexandr Ignatchenko¶, Cheryl H. Arrowsmith¶,
Thomas Szyperski§, Gaetano T. Montelione‡, David Baker†�, and Ad Bax*�

*Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892;
†Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195; ‡Center for Advanced Biotechnology and
Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey,
and Robert Wood Johnson Medical School, Piscataway, NJ 08854; §Departments of Chemistry and Structural Biology and Northeast Structural Genomics
Consortium, University at Buffalo, State University of New York, Buffalo, NY 14260; and ¶Ontario Cancer Institute, Department of Medical Biophysics,
and Northeast Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G IL5

Contributed by Ad Bax, January 10, 2008 (sent for review December 14, 2007)

Protein NMR chemical shifts are highly sensitive to local structure.
A robust protocol is described that exploits this relation for de novo
protein structure generation, using as input experimental param-
eters the 13C�, 13C�, 13C�, 15N, 1H� and 1HN NMR chemical shifts.
These shifts are generally available at the early stage of the
traditional NMR structure determination process, before the col-
lection and analysis of structural restraints. The chemical shift
based structure determination protocol uses an empirically opti-
mized procedure to select protein fragments from the Protein Data
Bank, in conjunction with the standard ROSETTA Monte Carlo
assembly and relaxation methods. Evaluation of 16 proteins, vary-
ing in size from 56 to 129 residues, yielded full-atom models that
have 0.7–1.8 Å root mean square deviations for the backbone
atoms relative to the experimentally determined x-ray or NMR
structures. The strategy also has been successfully applied in a
blind manner to nine protein targets with molecular masses up to
15.4 kDa, whose conventional NMR structure determination was
conducted in parallel by the Northeast Structural Genomics Con-
sortium. This protocol potentially provides a new direction for
high-throughput NMR structure determination.

molecular fragment replacement � protein structure prediction �
ROSETTA � structural genomics

Over the past two decades, NMR spectroscopy has become an
established complement to x-ray crystallography for determi-

nation of the three-dimensional (3D) structures of proteins at
atomic resolution. The vast majority of current protein NMR
structure studies today rely on the expression of recombinant
protein with uniform enrichment of 13C and 15N stable isotopes.
The first stage of the structure determination process then involves
assignment of the 1H, 15N, and 13C NMR resonances of the
polypeptide backbone atoms and often can be carried out quite
rapidly, using small amounts of protein. A number of procedures
have been introduced in recent years that can greatly expedite this
resonance assignment process (1, 2). Chemical shift values, ob-
tained from this assignment process, reflect a wide array of struc-
tural factors including backbone and side-chain conformations,
secondary structure, hydrogen bond strength, and the position of
aromatic rings (3–8).

The second stage of the NMR structure determination process
involves assignment of the side chain resonances and collection of
structural data, including interproton distance restraints from mul-
tidimensional nuclear Overhauser enhancement (NOE) spectra.
Sensitivity of such experiments tends to be lower, therefore requir-
ing stable, relatively concentrated samples or lengthier data acqui-
sitions, and spectra exhibit more resonance overlap, complicating
analysis. Although procedures have been introduced for automated
interpretation of the thousands of cross peaks in such NOE spectra,
their success hinges upon the quality of the spectral data. As a result,
side chain assignment together with collection and analysis of the

NOE data commonly remains the limiting and most time-
consuming step in the NMR structure determination process.

Multiple NMR approaches have been proposed in recent years
that are all aimed at circumventing the need for collection and
iterative analysis of NOE data. In one such method, orientations of
bond vectors are determined from measurement of residual dipolar
couplings (RDCs) (9, 10). Searching of the protein structure
database (PDB) for fragments approximately compatible with
these couplings and the experimental chemical shifts then yields
substructures that subsequently can be assembled using a molecular
fragment replacement (MFR) method into a model for the target
protein (11). Completeness of the RDC data is a prerequisite when
building a protein with this approach. The feasibility of alternate
RDC-based procedures has also been demonstrated, but to date
none of these has advanced to a robust approach for routine
structure determination.

Chemical shift data can also be used to guide selection of
fragments (6), which can be used in conjunction with protein
sequence information and a reasonable force field to build up 3D
structure models (12). Two recent studies have extended this
approach considerably (13, 14). In particular, the CHESHIRE
method, introduced by Vendruscolo and coworkers (13), generates
all-atom structures and ‘‘refines’’ the model generated from se-
lected fragments using a force field similar to the standard ones
used in classical molecular dynamics simulations, while simulta-
neously optimizing agreement with the experimental chemical
shifts. This CHESHIRE approach, demonstrated for 11 proteins in
the size range of 46–123 residues, yielded results remarkably close
(1.3–1.8 Å backbone atom rmsd; 2.1–2.6 Å rmsd for all atoms) to
structures previously determined using conventional x-ray crystal-
lography or NMR methods.

It has long been recognized that the 3D structure of a protein is
directly related to its amino acid sequence (15). De novo structure
predictions from solely the sequence thus provide another pathway
to generate protein structural models. Among those, ROSETTA is
one of the most successful programs for obtaining atomic level 3D
structures of small proteins (16). For each small segment of the
query protein, ROSETTA selects two hundred fragments from the
crystallographic structural database that are similar in amino acid
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sequence and hence representative of the conformations the pep-
tide segment is likely to sample during folding. A Monte Carlo
based assembly process then uses these fragments to search for
compact, low energy folds. The ROSETTA full atom refinement
protocol, which employs Monte Carlo minimization coupled with
a detailed all-atom force field, is then used to search for low energy
structures with close complementary side chain packing in the
vicinity of the starting model (17). Adding the structural informa-
tion contained in experimentally determined NMR chemical shifts
holds promise to greatly improve the structural accuracy of selected
fragments, and thereby to improve ROSETTA performance with-
out any significant change in the basic structure or functioning of
this well established program.

Here, we demonstrate the robustness of this chemical-shift-
ROSETTA (CS-ROSETTA) approach for 16 proteins, whose
experimental structures had previously been determined by x-ray or
NMR methods. Although the structural coordinates of this test set
were not used during the de novo structure generation process, it
cannot be excluded a priori that optimization of the procedure itself
could have developed a bias favoring this set of 16 proteins.
Therefore, we also present the application of CS-ROSETTA to a
set of nine proteins, under study in the Northeast Structural
Genomics (NESG) consortium (www.nesg.org), for which only
chemical shift assignments but no structural coordinates were
available. Subsequent comparison with experimental NMR-
derived coordinates confirms the close similarity between the two
sets of structures, thereby independently validating the CS-
ROSETTA approach.

Results
Generating new protein structures by CS-ROSETTA involves two
separate stages. First, polypeptide fragments are selected from a
protein structural database, based on the combined use of 13C�,
13C�, 13C�, 15N, 1H�, and 1HN chemical shifts and the amino acid
sequence pattern. In the second stage, these fragments are used for
de novo structure generation, using the standard ROSETTA pro-
tocol. Below, we first evaluate the improvement in structural
accuracy of the selected fragments which results from use of a
recently improved correlation between protein chemical shift and
local structure, and then discuss the application of CS-ROSETTA
to structure generation.

Effects of Improved Chemical Shift Prediction on Fragment Accuracy.
The recently developed SPARTA program (8) predicts chemical
shifts of 13C�, 13C�, 13C�, 1H� and backbone 15N and 1HN atoms for
proteins of known structure. This program, initially trained on a set

of 200 proteins for which high-resolution x-ray structures as well as
complete chemical shift assignments were available, was subse-
quently used for ‘‘assigning’’ hypothetical chemical shifts to a set of
5,665 proteins for which high-resolution x-ray structures were
available in the PDB. Below, we refer to this set simply as ‘‘the
structural database.’’ Importantly, SPARTA not only offers a small,
�10% (8), improvement in accuracy for the predicted chemical
shifts compared with the best alternate program, SHIFTX (18), it
also derives an individual uncertainty for each chemical shift
assigned to the structural database. When searching this structural
database for fragments with chemical shifts similar to those of a
segment in the query protein, this uncertainty is taken into account.
It is also worth noting that this search aims for similarity in the
so-called secondary chemical shifts, which represent the deviations
of the chemical shifts from their random coil values. The correlation
between local structure and secondary shift to a good approxima-
tion is independent of residue type (6), and the use of secondary
shift thus removes the otherwise dominant impact of residue type
when searching the structural database. A separate, weaker factor
is used to favor selection of database fragments that are similar in
amino acid sequence to that of the query segment.

Despite the small magnitude of the improvement in accuracy of
SPARTA chemical shift prediction over alternate programs, this
modest advance strongly narrows down the selection of fragments
compatible with the chemical shifts of the query segment. The
impact of narrowing the search on the structural accuracy of the
selected fragments is evaluated for the small proteins ubiquitin and
GB3 [Fig. 1 and supporting information (SI) Fig. 5], using a
structural database assigned with either SPARTA or the program
DC (19). As can be seen in Fig. 1, the backbone coordinate error
obtained for fragments selected from the DC-assigned database is
25–65% higher than for the SPARTA-assigned database. Success
or failure of the ROSETTA assembly method depends not only on
the average quality of the selected fragments, but is limited also by
the accuracy of the best fragments, each of which is likely to be
‘‘tried’’ many times during the Monte Carlo procedure. Therefore,
we also compare the backbone coordinate rmsd for the best
fragments selected from the database with either type of chemical
shift assignment and, for reference, sequence similarity only (Fig. 1
and SI Fig. 5). Sequence similarity information alone provides less
structural restraint than sequence plus chemical shift, and therefore
results in a wider distribution of selected peptide conformations.
This wider sampling results in a significant loss in the average
quality of selected fragments (Fig. 1 A, C, and D), but is robust in
that the best fragment of the selected ensemble is never far from the

Fig. 1. Plots of normalized accuracy of database
fragments selected for ubiquitin. For each ubiquitin
segment, 200 fragment candidates of the same length
were selected using either the standard ROSETTA pro-
cedure (filled triangles), or an MFR search of the 5665-
protein structural database, assigned by the programs
DC (filled circles) or SPARTA (filled diamonds). For all
panels, coordinate rmsds (N, C�, and C�) between query
segment and selected fragments are normalized with
respect to randomly selected fragments. (A and B)
Average (A) and lowest (B) normalized rmsd of 200
selected fragments, as a function of fragment size,
relative to the x-ray coordinates of the corresponding
ubiquitin segment, averaged over all (overlapped)
consecutive segments. (C and D) Average normalized
rmsd of 200 nine-residue (C) and three-residue (D)
fragments relative to the x-ray coordinates, as a func-
tion of position in the ubiquitin sequence. (E and F)
Lowest normalized rmsd of any of these selected nine-
residue (E) or three-residue (F) fragments.
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reference structure, in particular for short fragments (Fig. 1 B, E,
and F).

Evaluating CS-ROSETTA for Proteins of Known Structure. A set of 16
small proteins, for which published chemical shifts and coordinates
derived from x-ray diffraction or NMR data were available, was
used to optimize the CS-ROSETTA protocol and evaluate its
applicability. These proteins range in size from 56 to 129 residues
and include different fold types (�-, �-, and �/�-folds) and topo-
logical complexities (Table 1 and SI Table 3). For each protein,
fragments were selected from our structural database using the
MFR module of the NMRPipe software package, which compares
the experimental chemical shifts with those of the �106 fragments
contained in the SPARTA-assigned database. The MFR-selected
fragments were used as input for ROSETTA Monte Carlo frag-
ment assembly and subsequent full atom refinement (see Methods).

For each test protein, �10,000–20,000 trial structures were
generated by CS-ROSETTA. Using MFR-selected fragments,
lower energy structures are obtained than when using standard
ROSETTA fragments (SI Fig. 6). When plotting the all-atom
energy, as evaluated by ROSETTA versus the difference in C�

coordinates relative to the x-ray/NMR reference structures (Fig. 2
and SI Fig. 7), for most proteins the backbone coordinates of the
all-atom models with the lowest total energy deviate very little,
�1–2 Å, from the reference structures. However, for a few proteins
(e.g., histidine phosphocarrier protein, or HPr, Fig. 2C), models
deviating ca 3 Å from the correct structure score more favorably
than models that fall closer, �1 Å, to the reference structure, both
in terms of total energy and in terms of the number of structures
in the cluster. However, the standard ROSETTA energy scoring
does not yet take into account the agreement between the structural
models and the experimental chemical shifts. Each model is as-
sembled starting from fragments that, on average, agree reasonably
well with experimental chemical shifts, but because chemical shift
is not used as a restraint during the ROSETTA Monte Carlo
assembly process and its subsequent refinement, the chemical shifts
predicted by SPARTA for these models can deviate substantially
from the experimental input values. Interestingly, a significant
correlation is found between the goodness of the model, and how
well it agrees with the experimental chemical shifts (SI Fig. 8). As
shown in Fig. 2 A�–D� and SI Fig. 7, after inclusion of a chemical
shift term in the empirical all-atom energy function (Eq. 1 in
Methods), the lowest energy models consistently fall close to the
reference structure. Note that the use of chemical shifts to rescore
the energy function only becomes beneficial when ROSETTA
structures are close to the experimental structure. For models that
deviate by �5 Å from the true structure, agreement with chemical
shifts no longer is a useful discriminator (SI Fig. 8).

Results for the full set of 16 test proteins (Table 1 and SI Table
3) show that, in all cases, the backbone atomic coordinates of the
lowest-energy predicted models are within 0.7–1.8 Å from their
experimental x-ray or NMR reference structures (Fig. 3 and SI Fig.
9). Even when considering all nonhydrogen atoms of these struc-
tures, remarkably close agreement (1.4–2.5 Å) is found. The latter
is likely due to the reasonably accurate description of hydrogen
bonding, side chain packing, polar solvation, and backbone and side
chain torsional energy by the ROSETTA all atom force field (23,
24, 27).

For proteins with incomplete backbone chemical shift assign-
ments, such as XcR50, HR2106, Spo0F and profilin, CS-
ROSETTA still yields high quality models (SI Table 3). If a given
type of nucleus, for example, 13C�, is absent from the assignment
table, this simply results in a slight decrease in accuracy of the
fragments selected from the database, but which nevertheless

Table 1. Accuracy of CS-ROSETTA structures for 16 proteins used
during optimization

Protein
name PDB ID N�/N�* Nres

† Ncs
‡ rmsdbb

§, Å rmsdall
¶, Å

GB3 2OED 14/26 56 332 0.69 1.40
CspA 1MJC 0/33 70 405 1.57 2.19
Calbindin 4ICB 47/0 75 435 1.20 2.01
Ubiquitin 1D3Z 18/25 76 426 0.75 1.35
XcR50 1TTZ 28/16 76 352 1.53 2.30
DinI 1GHH 36/21 81 463 1.76 2.29
HPr 1POH 29/23 85 419 1.01 1.79
MrR16 1YWX 23/35 88 514 1.52 2.28
TM1112 1O5U 10/52 89 524 1.51 2.22
PHS018 2GLW 20/41 92 531 1.28 2.08
HR2106� 2HZ5 37/25 96 470 1.65 2.42
TM1442 1SBO 41/23 110 647 1.09 1.88
Vc0424 1NXI 55/25 114 679 1.72 2.51
Spo0F 1SRR 55/25 121 590 1.24 2.02
Profilin 1PRQ 41/41 125 595 1.71 2.34
Apo�lfabp 1LFO 15/70 129 688 1.64 2.18

Additional information in SI Table 3.
*Number of residues in �-helix and �-strand.
†Number of total residues. N- and C-terminal flexible tails are excluded from
RMSD calculation (see SI Table 3).

‡Total number of CS-ROSETTA input chemical shifts.
§rmsd (C�, C�, and N) of the lowest-energy model to the experimental structure.
¶rmsd (all non-H atoms) of the lowest-energy model to the experimental
structure.

�Protein HR2106 is a homodimer, only the monomer conformation is calcu-
lated and analyzed in this work.

Fig. 2. Plots of ROSETTA all atom energy versus C� rmsd relative to the experimental structures for four representative test proteins. (A–D) Standard ROSETTA
all atom energy. (A�–D�) ROSETTA energy, rescored by using the experimental chemical shifts (Eq. 1). (A) Ubiquitin. (B) Calbindin. (C) HPr. (D) TM1112. For A�–D�,
the model with the lowest energy, marked by an arrow, is shown in Fig. 3 or SI Fig. 9.
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remain far superior than what could be obtained on the basis of
sequence information alone. On the other hand, if for a contiguous
region along the protein backbone all chemical shifts are missing,
for example as a result of conformational exchange on a micro- to
millisecond time scale, CS-ROSETTA effectively reverts to stan-
dard ROSETTA structure prediction for these residues. For the
remainder of the protein, it takes advantage of the experimental
chemical shifts.

Convergence and Acceptance of Predicted Models. The CS-
ROSETTA results obtained for the 16 proteins suggest that the
ROSETTA all-atom energy is funneled with respect to the C� rmsd
from the experimental structures, resulting in convergence to a
unique structural model (Fig. 2 and SI Fig. 7). In the absence of a
reference structure, a decision on whether the CS-ROSETTA
structure generation process has converged instead is based on how
well the coordinates of the lowest energy structures agree with one
another. For this purpose, the ROSETTA all-atom energy is
plotted as a function of the C� rmsd relative to the model with the
lowest energy. Indeed, such diagrams show the presence of at least
10 low-energy structures for each of the 16 test proteins that have
a low C� rmsd relative to the lowest-energy structure (SI Fig. 10).

In contrast, when inspecting in the same manner the energies of
the models predicted for several larger proteins (SI Table 4), no
clustering around the lowest energy structure is observed and the
backbone coordinates of other low energy structures differ by more
than 4–5 Å from those of the lowest-energy model (SI Fig. 11). Such
large divergence in structure for the lowest energy models indicates
that the structure determination process has not converged, and in
these cases a reliable structure model cannot be obtained from the
calculations. In practice, we find that convergence rapidly decreases
with increasing protein size, and that for proteins larger than �130
residues the CS-ROSETTA approach starts to fail. Convergence is
also adversely affected by the presence of long, disordered loops in
the protein.

Blind Structure Generation for In-Progress Structural Genomics Pro-
teins. To further evaluate the applicability of CS-ROSETTA to
structural genomics and high throughput NMR, structures were

generated for nine proteins, under study by investigators of the
NESG consortium, for which backbone chemical shifts but no
coordinates were available. Vice versa, with one exception (see
footnote to SI Table 5), none of the structural information derived
from CS-ROSETTA was sent to NESG until after the structures of
these targets had been determined using their standard, NOE-
based procedures (20, 21). The nine proteins range in molecular
mass from 7.8 to 15.4 kDa and span a range of topological
complexities (Table 2 and SI Table 5). For each of these proteins,
the 10 structures with the lowest ROSETTA total energy, after
rescoring to ensure agreement with the experimental chemical
shifts, are selected for further evaluation. Comparison of these
models to the experimental NMR structures indicates the results to
be strikingly similar (Fig. 4, Table 2, SI Fig. 12, and SI Table 5). The
two different methods identify identical folds and very similar
secondary structure, with one caveat: The CS-ROSETTA struc-
tures had a tendency to slightly lengthen the elements of secondary
structure and include residues that were clearly disordered as
judged by the NMR data. For example, CS-ROSETTA extended
the N-terminal helix of StR82 by two residues, and for 8 of the 10
lowest energy structures, it suggested the presence of a short helical
segment within a disordered extended loop region. The ROSETTA
all-atom energy function favors the formation of intramolecular
hydrogen bonds, and a tendency to generate secondary structure
for disordered regions is therefore not surprising. This caveat was
subsequently addressed by using the recently introduced �random
coil index�, or RCI (22), which positively identifies regions of
disordered structure on the basis of near-random-coil chemical
shifts. These residues are now flagged in CS-ROSETTA, such that
their hydrogen bonding no longer contributes to the ROSETTA
energy term.

When comparing the two sets of structures, and focusing on the
ordered regions, remarkably good agreement is seen with backbone
coordinate rmsd values �1 Å for six of the nine proteins, the other
three differing by less than �2 Å. Standard structure validation
parameters, such as the G-factor obtained with the program
PROCHECK (23), or the MolProbity (24) clash and Ramachan-
dran plot scores generally rank the CS-ROSETTA structures
comparable or higher in quality than the experimental NMR
structures (SI Table 5). DP scores, which compare short distances
in the structure with the experimental NOESY peak list (25), are
also reasonably good for most of the CS-ROSETTA structures (SI
Table 5). However, these DP scores are 10–40% better for the

Fig. 3. Backbone ribbon representations (32) of the lowest-energy CS-
ROSETTA structure (red) superimposed on the experimental x-ray/NMR struc-
tures (blue), with superposition optimized for ordered residues, as defined in
the footnote to SI Table 3. (A) GB3. (B) CspA. (C) Calbindin. (D) Ubiquitin. (E)
DinI. (F) Apo�lafbp. Overlays of the 10 remaining structures are shown in SI
Fig. 9.

Table 2. Statistics on CS-ROSETTA structures of nine structural
genomics proteins

Protein
name Nres* PDB ID rmsdbb

†, Å rmsdall
‡, Å DP§, %

RpT7 65 2JTV 0.64 1.29 69
StR82 69 2JT1 0.57 1.14 65
RhR95 72 2JVM 0.66 1.18 55
NeT4 73 2JV8 0.70 1.42 57
TR80 78 2JXT 0.69 1.27 67
VfR117 80 2JVW 0.60 1.40 37
PsR211 100 2JVA 2.07 2.34 57
AtR23 101 2JYA 1.10 1.81 60
NeR45A 147 2JXN 2.03 2.85 53

Additional information in SI Table 5.
*Number of total residues.
†rmsd (C�, C�, and N) of the mean coordinates of 10 lowest-energy models to
the mean coordinates of the experimental NMR structure. Residues in disor-
dered regions (see SI Table 5) are excluded from rmsd calculation.

‡rmsd (all non-H atoms) of the mean coordinates of 10 lowest-energy models
to the mean coordinates of the experimental structure.

§DP scores measure the agreement between the structure and the NOESY
peak list, as defined in ref. 25.
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experimentally determined NMR structures, refined against these
same experimental NOESY data, than for the predicted structures
(SI Table 5). Differences in DP scores are found to result mostly
from small differences in core side chain packing.

Discussion
It has long been recognized that chemical shifts are strongly
influenced by local conformation. The CHESHIRE method, re-
cently introduced by Vendruscolo and coworkers (13), exploits this
relation and became the first program to generate near-atomic
resolution structures from chemical shifts. The CS-ROSETTA
method described in the present study is based on the same concept,
but combines the well established ROSETTA structure prediction
program (16, 17) with a recently enhanced empirical relation
between structure and chemical shift (8), which allows selection of
database fragments that better match the structure of the unknown
protein. The method was calibrated using 16 proteins of known
structure, and then successfully tested for nine proteins under study
in the NESG structural genomics program. The improvement in
fragment selection and the incorporation of high resolution refine-
ment are responsible for the significant increase in model quality
compared with an earlier integration of chemical shift data with
ROSETTA (12).

All 16 proteins used to initially develop the CS-ROSETTA
program are of relatively simple topology. Upon completion of this
work, we became aware of an NMR structure recently solved for
corona virus protein nsp1 (26) (116 residues excluding disordered
tails) which exhibits a novel, highly unusual fold that requires a
complex ‘‘folding from the center’’ pathway. The standard RO-
SETTA structure assembly protocol has difficulty generating such
nearly knot-forming proteins, and it is therefore not surprising that
CS-ROSETTA was unable to obtain a converged low energy fold.
Failure to reach the convergence threshold (see Methods) for this
protein provided a clear indication that no structural conclusions
could be drawn from the CS-ROSETTA results.

CS-ROSETTA was successfully applied, in a blind manner, to
determine the structures of nine in progress structural genomics
targets with sizes in the 65–129 residue range, yielding structural
models that are highly consistent with their independently solved
experimental NMR structures. These structural genomics target
proteins tend to include larger unstructured loop regions than the
globular proteins for which CS-ROSETTA originally was
optimized.

Successful application of CS-ROSETTA so far remains limited
to relatively small proteins, not larger than �15 kDa. Although this
size threshold is substantially higher than for conventional
ROSETTA structure prediction, it remains well below the 25–30
kDa size limit of protein structures that can be studied in a relatively
standard manner by triple resonance NMR spectroscopy. A num-
ber of variations and extensions of CS-ROSETTA are currently
being explored to extend its limit to this larger size range, where
conventional NMR structure determination can become very time-
intensive. Preliminary results indicate that knowledge regarding a
very small set of long range HN–HN or HN–CH3 NOE interactions,
which typically can easily be extracted from a 3D NOE data set on
a perdeuterated protein sample with protonated amide and/or
methyl protons, provides a considerable boost in this direction, and
such experimental information can readily be added to the standard
ROSETTA structure generation algorithm (12, 17).

ROSETTA structure determination requires large amounts of
computer time for generating a sufficient number (10,000–20,000)
of all-atom models, needed to ensure ‘‘convergence’’ to the lowest
energy model. Our study used the Berkeley Open Infrastructure for
Network Computing (BOINC) for this computationally demanding
work, taking advantage of idle time on thousands of personal
computers world-wide. However, computations for a single protein
can also be carried out locally, requiring �1 day on a cluster of
100–200 CPUs, and in favorable cases a smaller number of models
suffices to reach convergence (SI Fig. 13).

Compared with conventional NMR protein structure determi-
nation, CS-ROSETTA offers considerable time savings, both in
terms of measurement time and in terms of spectral analysis.
CS-ROSETTA uses only backbone and 13C� chemical shifts,
thereby obviating the need for side chain assignments as well as the
collection and interpretation of NOE data. Although the time
required for these last two steps varies greatly depending on the
protein, the quality of the data, and the expertise of the experi-
mentalist, they always take considerably longer than the time
needed for backbone assignments. Thus, we estimate that CS-
ROSETTA yields a time savings of at least 50%.

Perhaps even more important than the potential acceleration of
the NMR structure determination process is CS-ROSETTA’s
applicability to the study of systems not amenable by conventional
NMR (13). These include structures of short-lived, unstable pro-
teins, or systems where a minor state is in dynamic equilibrium with
a more populated state, in which case collection of structural
restraints for the minor component can be prohibitively difficult.

Fig. 4. Results from blind CS-ROSETTA structure generation for four structural genomics targets (Table 2). The remaining five are in SI Fig. 12. (A–D)
Superposition of lowest-energy CS-ROSETTA models (red) with experimental NMR structures (blue), with superposition optimized for ordered residues, as
defined in the footnote to SI Table 5. (E–H) Plots of rescored (Eq. 1) ROSETTA all-atom energy versus C� rmsd relative to the lowest-energy model (bold dot on
vertical axis). (A and E) StR82. (B and F) RpT7. (C and G) VfR117. (D and H) NeT4.
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Methods
Structural Database and Fragment Searching. Details regarding the construction
of the structural database, the selection of fragments, and identification of
flexible regions are provided as SI.

Generating Protein Structures from Fragments using ROSETTA. The regular
ROSETTA Monte Carlo fragment assembly method (16, 27, 28) is used in this work
to generate full atom models, including the steps used for generation of a
low-resolution backbone conformation, as well as the final refinement stage
where a full-atom model is generated. During generation of the backbone fold,
ROSETTA adopts a simple representation of the protein chain in which only the
backboneheavyatomsandthe ‘‘centroid’’of sidechainsareexplicitly considered.
Starting from a fully extended chain, these backbone folds are generated by
360,000 steps of Monte Carlo fragment replacement while minimizing an em-
pirical energy term that primarily includes van der Waals packing, hydrogen
bonding and desolvation terms, and where the �, �, and � backbone torsion
angles of a randomly selected three- or nine-residue fragment of the protein
chain are replaced with the torsion angles from one of the 200 corresponding,
randomly selected MFR candidates. The move is accepted according to the score
calculated for the new conformation using the Metropolis criterion (29). In the
subsequent high-resolution all-atom model generation, side chain conforma-
tions are first added to the low-resolution backbone model using a Monte Carlo
simulated annealing search (30) through a backbone-dependent rotamer library
(31). This all atom model is then refined using a Monte Carlo minimization
protocol in which each attempted move consists of (i) a random perturbation of
one or more backbone torsion angle, (ii) reoptimization of the side chain rotamer
conformations and (iii) gradient-based optimization of the backbone and side
chain torsion angles. These compound moves are accepted or rejected based on
the Metropolis criterion; the number of attempted moves is equal to twice the
number of residues in the protein. The all-atom energy function includes a
Lennard-Jones potential, an orientation dependent hydrogen bonding poten-
tial,an implicit solvationmodel,andaknowledge-basedsidechainandbackbone
torsional potential. Details on the energy function and methods are described in
(16, 17). For each protein, 10,000–20,000 all atom models are generated, and for
the 16 test proteins, Fig. 2 and SI Fig. 7 show the energies plotted against the C�

rmsd relative to the known test protein structure.
All CS-ROSETTA protein models were generated using ROSETTA@home

(http://boinc.bakerlab.org/rosetta/) supported by the BOINC server.

Selection of All-Atom Models Using Energies and Chemical Shifts. The ROSETTA
all-atom models resulting from the above procedure were evaluated further in
terms of the fitness with respect to the experimental chemical shifts. For each
all-atom model, the backbone 13C�, 13C�, 13C�, 15N, 1H�, and 1HN chemical shifts

were predicted using the SPARTA program. The outcome of this was used to
adjust the ROSETTA full atom energy according to:

E� � E � c � 	 cs
2 , [1a]

where

	 cs
2 ��

i

�
j

(
i,j
exp � 
 i, j

pred)2/� i,j
2 , [1b]

where 
 i,j
pred refers to the SPARTA-predicted backbone chemical shift (i � 13C�,

13C�, 13C�, 15N, 1H�, and 1HN) from the all-atom model for a given residue j, 
i,j
exp is

theexperimental chemical shift, �i,j is theuncertaintyof 
 i,j
pred, and c is aweighting

factor set to 0.25.

Extraction of the Best Models. For each protein, a total of 10,000–20,000 all-atom
models were generated from the MFR-selected fragments by the ROSETTA
assembly and relaxation protocol. The 5,000 lowest-energy models were taken
and their all-atom energies were adjusted according to Eq 1. A plot of the
ROSETTA all-atom energy against the C� rmsd relative to the lowest-energy
model (Fig. 4 and SI Fig. 12) was then used to evaluate convergence, and to select
the 10 lowest-energy models.

Criteria for Convergence and Accepting Models. For all predicted models of each
protein the ROSETTA all-atom energy, rescored by Eq. 1, is plotted against its C�

rmsd from the lowest-energy model. If the low energy models cluster within less
than �2 Å from the model with the lowest energy, the structure prediction is
deemed successful and the 10 lowest energy models are accepted.

Software. CS-ROSETTA, which includes SPARTA, MFR scripts, a complete example
for GB3, and the structural database used in this work, can be freely downloaded
from http://spin.niddk.nih.gov/bax/software/CSROSETTA/index.html. ROSETTA
can be downloaded from www.rosettacommons.org/software.
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