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Protein design
algorithm

Positions to design & 
allowed 

Rotamers/Amino Acids

Rotamer Library

Energy f(x)

Protein structure

www.cs.duke.edu/donaldlab

1. Problem Definition

GMEC 2 S
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11

r! Rotamer assignment (RA)

ri ! Rotamer at position i for RA r

r1 2

1. Problem Definition (2)
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E(r) ! Energy of rotamer assignment r

1
2

E(r) =
X

i

Ei(ri) +
X

i;j

Eij(ri; rj)

Ei(ri) ! Energy between rotamer ri and ¯xed backbone

Eij(ri; rj) ! Energy between rotamers ri and rj

E i
(r 1
) Eij(r1; r2)

1. Problem Definition (3)



6

1
2

T(k) ! returns amino acid type of rotamer k

T(r) ! returns sequence of rotamer assignment r

T(r1) = hexagon

T(r2) = cross

T(r) = hexagon; cross

r

1. Problem Definition (4)
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Protein design
algorithm

Positions to design & 
allowed 

Rotamers/Amino Acids

Rotamer Library

Energy f(x)

Protein structure

S¤ = T(argmin
r
E(r))www.cs.duke.edu/donaldlab

1. Problem Definition (5)

GMEC 2 S
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DEE / A* BroMAP BWM

Global Minimum Energy Conformation

SCMF MCSA

Low energy conformation

Probabilistic
Methods

Exact
Methods

1. Problem Definition (6) Related Work
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Model Inaccurate!

Positions to design & 
allowed 

Rotamers/Amino Acids

Rotamer Library

Energy f(x)

Protein structure

www.cs.duke.edu/donaldlab

1. Problem Definition (7)
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Protein design
algorithm

Algorithm

Fast or provable

S¤ = T(argmin
r
E(r))

1. Problem Definition (8)
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Too stable

Low 
binding 
specificity

Low energy 
conformation

Not fold to 
target

1. Problem Definition (9)
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Solution:  Find a set 
of low energy 
sequences 

DEE/A*

Ordered set of gap-free low energy
conformations, including GMEC

tBMMF

Probabilistic
Methods

Provable
Methods

Set of  low energy
conformations

1. Problem Definition (10)
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Problem Definition: Summary

● Protein design algorithms search for the  
sequence with the Global Minimum Energy 
Conformation (GMEC).

● Our model is inaccurate: more than one low 
energy sequence is desirable.

● Fromer et al. Propose tBMMF to generate a set 
of low energy sequences.
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Ãij(ri; rj) = e
¡Eij(ri;rj)

T

Ãi(ri) = e
¡Ei(ri)

T

Probabilistic factor for self-interactions

Probabilistic factor for pairwise interactions

2. Our problem as an inference problem
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P (r1; :::; rN ) =
1
Z

Y

i

Ãi(ri)
Y

i;j

Ãij(ri; rj) =
1
Z
e

¡E(r)
T

Probability distribution for rotamer assignment 

Z =
X

r

e
E(r)
T

Partition function

r

2. Inference problem (2)
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S¤ = T(argmin
r
E(r))

Minimization goal (from definition)

Minimization goal for a graphical model problem

2. Inference problem (3)

S¤ = T(argmax
r
Pr(r))
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Example: Inference problem

Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

E(r0) =?

E(r00) =?

What is our GMEC??

2. Inference problem (4)



18

Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

E(r00) = (¡1 +¡4) + (¡3 +¡4)

E(r0) = (¡1 + ¡2) + (¡5 +¡2)
= ¡10

= ¡12
r00 is our GMEC

2. Inference problem (5)
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Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

Ãi(r
0
1) = e

¡Ei(r
0
1)

T = e

T = 1 (for our example)

Ãi(r
0
2) = e

¡Ei(r
0
2)

T = e5

Ãi(r
00
1 ) = e

¡Ei(r
00
1 )

T = e

Ãi(r
00
2 ) = e

¡Ei(r
00
2 )

T = e3

2. Inference problem (6)
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Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

T = 1 (for our example)

Ãij(r
0
1; r
0
2) = e

¡Eij(r
0
1;r

0
2)

T = e2

Ãij(r
00
1 ; r

00
2 ) = e

¡Eij(r
00
1 ;r

00
2 )

T = e4

Z =
X

r

e
E(r)
T = e10 + e12

2. Inference problem (7)
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Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

T = 1 (for our example)

P (r01; r
0
2) =

1

Z

Y

i

Ãi(r
0
i)
Y

i;j

Ãij(r
0
i; r
0
j)

=
e10

e10 + e12

2. Inference problem (8)
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Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

T = 1 (for our example)

P (r001 ; r
00
2 ) =

1

Z

Y

i

Ãi(r
0
i)
Y

i;j

Ãij(r
00
i ; r

00
j )

=
e12

e10 + e12

2. Inference problem (9)
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Allowed
1

2

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

Ei(r1) Ei(r2)

-5

-3

-1

-2-4 r0

r00

T = 1 (for our example)

S¤ = T(r00)

S¤ = T(argmax
r
Pr(r))

2. Inference problem (10)
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S¤ = T(argmin
r
E(r))

Minimization goal (from definition)

Minimization goal for a graphical model problem

We still have a non-polynomial problem!

But formulated as an
inference problem

Probabilistic
methods

S¤ = T(argmax
r
Pr(r))

2. Inference problem (11)
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Summary: Inference problem

● We model our problem as an inference 
problem.

● We can use probabilistic methods to solve it.
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3. Graphical models for protein design and belief 
propagation (BP)

1. Model each design 
position as a random variable

2. Build interaction graph that shows 
conditional 

independence between variables 

Source: Fromer M, Yanover, C.  Proteins (2008)

SspB dimer interface: Inter-monomeric interactions (Cα)
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1

2

Example: Belief propagation

3

3

2

1

r03
r003

node in the graphical 
model:  interacting 
residue in the 
structure.

node in the graphical 
model:  random 
variable

3. Graphical Models/BP (2)
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1

2

Example: Belief propagation

b3

3

2

1

r03
r003

edge: energy 
interaction between 
two residues.

44
If two residues are 
distant from each 
other, no edge 
between them.

edge: causal 
relationship between 
two nodes

3. Graphical Models/BP (3)
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1

2

Example: Belief propagation

3

3

2

1

r03

r003

Every random variable can be in 
one of several states: allowable 
rotamers for that position

r02

r01

r03

r003

r02

r01

3. Graphical Models/BP (4)
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1

2

Example: Belief propagation

3

3

2

1

r03

r003

The energy of each state 
depends on:
- its singleton energy
- its  pairwise energies
- the energies of the states of its 
parents

r02

r01

r03

r003

r02

r01

3. Graphical Models/BP (5)
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Example: Belief propagation

3

2

1

r03

Belief propagation: each node 
tells its neighbors nodes what it 
believes their state should be

r003

r02

r01

A message is sent from node i to 
node j 

The message is a vector where 
# of dimensions: allowed 
states/rotamers in recipient

m2
!3

m2!3(r03)
m2!3(r003 )

3. Graphical Models/BP (6)
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Example: Belief propagation

3

2

1

r03

Who sends the first message? 

r003

r02

r01

3. Graphical Models/BP (7)
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Example: Belief propagation

3

2

1

r03

Who sends the first message? 

r003

r02

r01

In a tree: the leaves
- Belief propagation is proven to 
be correct in a tree!

3. Graphical Models/BP (8)
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Example: Belief propagation

3

2

1

r03

Who sends the first message? 

r003

r02

r01

In a graph with cycles:
● Set initial values
● Send in parallel 

No guarantees can be 
made! There might not be 
any convergence

3. Graphical Models/BP (9)
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Example: Belief propagation

3

2

1

r03

r003

r02

r01

m2!3(r03) = 1

m2!3(r003 ) = 1

m2
!3

m3
!2

m
1!
3m

3!
1

m
1
!
2

m
2
!
1

m1!3(r
0
3) = 1

m1!3(r
00
3 ) = 1

m2!1(r
0
1) = 1

m1!2(r
0
2) = 1

m3!1(r
0
1) = 1

m3!2(r
0
2) = 1

We iterate from 
there.

3. Graphical Models/BP (10)
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Example: Belief propagation

3

2

1

r03

r003

r02

r01

m2
!3

m
1!
3

Node 3 receives 
messages from nodes 1 
and 2

m2!3(r
0
3) = 1

m2!3(r
00
3 ) = 1

m1!3(r
0
3) = 1

m1!3(r
00
3 ) = 1

3. Graphical Models/BP (11)
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Example: Belief propagation

3

2

1

r03

r003

r02

r01

What message does node 
3 send to node 1 on the 
next iteration?

m
3!
1

m3!1(r01) =?

3. Graphical Models/BP (12)
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Belief propagation: message 
passing

mi!j(rj) = max
ri
:e

¡Ei(ri)¡Eij (ri;rj )

t

Y

k2N(i)nj
mk!i(ri);

N(i) ! Neighbors of variable i

Message that gets sent on each iteration
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Ei(r2)

-2

Ei(r1)

-1

Position #1

P
os

iti
on

 #
2

Eij(r1; r2)

-4

Position #3

P
os

iti
on

 #
2

-3-1

Eij(r2; r3)

Position #3

P
os

iti
on

 #
1

-4-1

Eij(r1; r3)

-6

-2

Ei(r3)

Example: Belief propagation
Pairwise energies

Singleton energies

r03 r003

r03 r003

r03

r003

Iteration 0:

m3!1(r01) = max
r3
:e

¡Ei(r3)¡Eij (r
0
3;r1)

t m2!3(r03);

=?

e
¡Ei(r3)¡Eij(r

00
3 ;r1)

t m2!3(r003 );
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Example: Belief propagation

3

2

1

r03

r003

r02

r01

Once it converges we can 
compute the belief each 
node has about itself

m2
!3

m
1!
3

Belief about one's 
state:
Multiply all incoming 
messages by 
singleton energy

3. Graphical Models/BP (15)
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Belief propagation: Max-marginals

r¤i = arg max
ri2Rotsi

Pr1i (ri)

Pr1i (ri) = max
r0:r0i=ri

Pr(r0)

MMi(ri) = e
¡Ei(ri)

t

Y

k2N(i)
mk!i(ri)

Belief about each rotamer

“Most likely” rotamer for position i
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Fromer M, Yanover, C.  Proteins (2008)

Fromer M, Yanover, C.  Proteins (2008)

3. Graphical Models/BP (17)
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Fromer M, Yanover, C.  Proteins (2008)

Fromer M, Yanover, C.  Proteins (2008)

3. Graphical Models/BP (18)
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3. Graphical Models: Summary

● Formulate as an inference problem
● Model our design problem as a graphical model
● Establish edges between interacting residues
● Use Belief Propagation to find the beliefs for 

each position
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4. tBMMF: type specific BMMF

● Paper's main contribution
● Builds on previous work by C. Yanover (2004)
● Uses Belief propagation to find lowest energy 

sequence and constrains space to find 
subsequent sequences
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TBMMF (simplification)

1. Find the lowest energy sequence using BP

2. Find the next lowest energy sequence 
while excluding amino acids from the previous one

3. Partition into two subspaces using constraints
according to the next lowest energy sequence
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Example: tBMMF (1)

Fromer M, Yanover, C.  Proteins (2008)

4. tBMMF (3)
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Example: tBMMF (2)

Fromer M, Yanover, C.  Proteins (2008)

4. tBMMF (4)
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Results

Fromer M, Yanover, C.  Proteins (2008)
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Results (2)

Fromer M, Yanover, C.  Proteins (2008)
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Results(3)

● Algorithms tried:
– DEE / A* (Goldstein, 1-split, 2-split, Magic Bullet)

– tBMMF 

– Ros: Rosetta

– SA: Simulated annealing over sequence space
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Results (4): Assessment results

Fromer M, Yanover, C.  Proteins (2008)
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Fromer M, Yanover, C.  Proteins (2008)

Results(5)
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Fromer M, Yanover, C.  Proteins (2008)

Results(6)
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Fromer M, Yanover, C.  Proteins (2008)

Results(6)
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Results (7)

● DEE/A* was not feasible for any case except 
the prion

● SspB: A* could only output one sequence
● DEE also did not finish after 12 days
● BD/K* did not finish after 12 days
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Results (8)

● Predicted sequences where highly similar 
between themselves. (high sequence identity)

● Very different from wild type sequence
● Solution: grouped tBMMF: apply constraints to 

whole groups of amino acids – proof of concept 
only  
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Conclusions

● Fast and accurate algorithm
● Outperforms all other algorithms:

– A* is not feasible

– Better accuracy than other probabilistic algorithms
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Conclusions (2)

● tBMMF produces a large set of very similar low 
energy results.

● This might be due to the many inaccuracies in 
the model

● Grouped tBMMF can produce a diverse set of 
low energy sequences 
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Conclusions (3)

● The results lack experimental data for 
validation.
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Related Work: (Fromer et al. 2008)

● Fromer F, Yanover C.  A computational 
framework to empower probabilistic protein 
design. ISMB 2008

● Phage display:
– 109 – 1010 randomized protein sequences

– Simultaneously tested for relevant biological 
function
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Related Work: (Fromer et al. 2008)

Fromer M, Yanover, C. Bioinformatics (2008)
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Related Work: (Fromer et al. 2008)

● Uses sum-product instead of max-product
● Obtain per-position amino acid probabilities
● Tried until convergence or 100000 iterations; all 

structures converged
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Related Work: (Fromer et al. 2008)

● Conclusions: 
– Model results in probability distributions far from 

those observed experimentally.

– Limitations of the model:
● Imprecise energy function
● Decomposition into pairwise energy terms
● Assumption of a fixed backbone
● Discretization of side chain conformations
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tBMMF algorithm


