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1. Problem Definition (2)

/
r — Rotamer assignment (RA) r -

r; — Rotamer at position ¢ for RA r




1. Problem Definition (3)

FE;(r;) — Energy between rotamer r; and fixed backbone

E;;i(ri,r;) — Energy between rotamers r; and r;

E(r) — Energy of rotamer assignment r

E(r) = ZEz'(Tz') + ZEM (75 75)



1. Problem Definition (4)

T'(k) — returns amino acid type of rotamer k

T(r) — returns sequence of rotamer assignment r

T(r;) = hexagon
T(ry) = cross

T(r) = hexagon, cross




1. Problem Definition (5)
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Protein structure
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1. Problem Definition (6) Related Work
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1. Problem Definition (7)

Rotamer Library

Protein structure
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1. Problem Definition (8)

algorithm
Algorithm

\ S* = T(arg min E(r))

/)fl

Fast or provable




1. Problem Definition (9)
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1. Problem Definition (10)

Provable

Methods i

Ordered set of gap-free low energy
conformations, including GMEC

Set of low energy
conformations

Solution: Find a set
of low energy
sequences

A

Probabilistic

Methods
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Problem Definition: Summary

* Protein design algorithms search for the
sequence with the Global Minimum Energy
Conformation (GMEC).

e Our model is inaccurate: more than one low
energy sequence is desirable.

 Fromer et al. Propose tBMMF to generate a set
of low energy sequences.
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2. Our problem as an inference problem

Probabilistic factor for self-interactions

—E;(r;)

i(rs) =e T

Probabilistic factor for pairwise interactions

—E;:(r;,r:)
wzj(,rz’r]) — zJT’L J

14



2. Inference problem (2)

Partition function

E(r)
Zzg e T
T

Probability distribution for rotamer assignment r

PGy, o) = o [T 0a(r) [ (i) = e ™
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2. Inference problem (3)

Minimization goal (from definition)

S* = T(argmin F(r))

-

Minimization goal for a graphical model problem

S* = T(arg max Pr(r))
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2. Inference problem (4)

E;i(ri,r2)
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2. Inference problem (5)

E;i(ri,r2)
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2. Inference problem (6)

E;i(ri,m2)
Position #1 Allowed ﬁz __—

A H
/.-4 -2

Position #2

Ei(r1)  Ei(r2)

‘ —B;(r7)
B F s wbh =TT

—E; (r3)
A Yilrh) =e— T = ¢

E; (ry)
Yi(ry) = e T =e

o —B;(ry) 3

T =1 (for our example) Yi(ry) =e~ T =e




2. Inference problem (7)

E;;i(ri,re)
Position #1 Allowed ﬁz __—

A H
/.-4 -2
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2. Inference problem (8)

E;i(ri,m2)
Position #1 Allowed ﬁz __—

A H
/.-4 -2

Position #2

Ei(r1)  Ei(r2)

|
1
M - :\“ e P = g [Twed [Tvs i)
_ 7 1,7
3 610
T el0 4 l2

T =1 (for our example)




2. Inference problem (9)

E;i(ri,m2)
Position #1 Allowed ﬁz __—

A H
/.-4 -2

Position #2

Ei(r1)  Ei(r2)
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2. Inference problem (10)

E;i(ri,m2) A
Position #1 Allowed ] ﬁz ——
A , :
/‘ 4 2 r 2' —
7“” A 45 -

Position #2

Ei(r1)  Ei(r2)

/. -1 VadlE S* = T(argmgxPr(r))
4 |
S* =T(r")

T =1 (for our example)




2. Inference problem (11)

Minimization goal (from definition)

S* = T(argmin E(r))

Minimization goal for a graphical model problem

S* = T(arg max Pr(r))

T

v

We still have a non-polynomial problem!

But formulated as an :>
inference problem

Probabilistic
methods
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Summary: Inference problem

* \We model our problem as an inference
problem.

* \We can use probabilistic methods to solve it.
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3. Graphical models for protein design and belief
propagation (BP)

1. Model each design 2. Build interaction graph that shows
position as a random variable > _ conditional _
independence between variables

Source: Fromer M, Yover, C. Proteins (2008)

SspB dimer interface: Inter-monomeric interactions (Ca)
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3. Graphical Models/BP (2) Example: Belief propagation

(2

@

node in the graphical
model: interacting
residue in the
structure.

node in the graphical
model: random
variable
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3. Graphical Models/BP (3) Example: Belief propagation

(2

edge: energy
interaction between
two residues.

edge: causal
relationship between
two nodes

If two residues are
distant from each
other, no edge
between them.
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3. Graphical Models/BP (4) Example: Belief propagation

T
2 7
3 \
L
S
)

Every random variable can be in
one of several states: allowable
rotamers for that position
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3. Graphical Models/BP (5) Example: Belief propagation

T
2 7
3 \
L
S
)

The energy of each state

depends on:

- its singleton energy

- its pairwise energies

- the energies of the states of its
parents 30



3. Graphical Models/BP (6) Example: Belief propagation

ma—3(T3)
ma—3(T3)
Belief propagation: each node
! tells its neighbors nodes what it
P 2 believes their state should be

’rg\ Wb 5

A message is sent from node i to

/ node j
!/
. The message is a vector where
1 # of dimensions: allowed

states/rotamers in recipient
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3. Graphical Models/BP (7)

Example: Belief propagation

Who sends the first message?
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3. Graphical Models/BP (8)

Example: Belief propagation

Who sends the first message?

In a tree: the leaves
- Belief propagation is proven to
be correct in a treel
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3. Graphical Models/BP (9) Example: Belief propagation

Who sends the first message?

/
T'a
/ S
s 2
\ In a graph with cycles:
 Set initial values
/ e Send in parallel
S
ry

No guarantees can be
made! There might not be
any convergence
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3. Graphical Models/BP (10) Example: Belief propagation

mo_s3 (?“:,3) =1
mo_s3 (’I“g) =1

m\_w(’l“{;) =\

We iterate from
there.

my_ﬂ(’l“i) =\
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3. Graphical Models/BP (11) Example: Belief propagation

my_nu(’f'\;) =
my_>\~(7“\L') =\

Node 3 receives
messages from nodes 1
and 2
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3. Graphical Models/BP (12)

What message does node
3 send to node 1 on the
next iteration?

Example: Belief propagation
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Belief propagation: message
passing

N (i) — Neighbors of variable ¢

Message that gets sent on each iteration

—E(r;)—E;;(ri,r;)
mi—(r;) = max \6 Z H mk%i(ri))

s
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Pairwise energies

Example: Belief propagation

E;i(ri,re)

Position #1

J\

/.-4

Position #2

Singleton energies

E;(r1) E;(rv) E;(r3)

SR

E;;i(ra,r3)

Position #3

J\

f

.\-1

r3

Position #2

-3
!/
rs

E;i(ri,rs)

Position #3

T
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Position #1

-4

/!
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Iteration 0:

—E;(r3)—E;;(r3,r1)
m3_>1(7°/1) — Imax , € — m2_>3(7“§),

|

—Ei(r3)—E,L~j(ré/,'r’1) y
e Z mo—3(T3)

)

39




3. Graphical Models/BP (15)

Once it converges we can
compute the belief each
node has about itself

Belief about one's
state:

Multiply all incoming
messages by
singleton energy

Example: Belief propagation

T

/

SNy

§
v,
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Belief propagation: Max-marginals

Belief about each rotamer

—E,;(r;)
MMZ(TZ) — € t H mk_m(”l“z)

“Most likely” rotamer for position i

r: =arg max Pr;°(r;)
r; ERots;

41



3. Graphical Models/BP (17)

c101
GRBBTTTI

Fromer M, Yanover, C. Proteins (2008)
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3. Graphical Models/BP (18)

11

I11

mmﬁ_;.cml(?‘cun) 'Tﬂ6101—>A101(?‘A101) TT13101—>012(?‘C12) mcu—s»mﬁ(?"mﬁ)

Fromer M, Yanover, C. Proteins (2008)
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3. Graphical Models: Summary

Formulate as an inference problem
Model our design problem as a graphical model

Establish edges between interacting residues

Use Belief Propagation to find the beliefs for
each position
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4. tBMMF: type specific BMMF

 Paper's main contribution
» Builds on previous work by C. Yanover (2004)

» Uses Belief propagation to find lowest energy
sequence and constrains space to find
subsequent sequences
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TBMMF (simplification)

>

1. Find the lowest energy sequence using BP

:

2. Find the next lowest energy sequence

while excluding amino acids from the previous one

:

3. Partition into two subspaces using constraints

according to the next lowest energy sequence

46



4. tBMMF (3)

A
[}
:ﬂ:
=
-2
2
P
B

Example: tBMMF (1)

Position #1

aa (+y (s
aa. rot. | g11 g1z g21  g22
1, hyy | =15 —11 | -6 -3
hlg —14 - ].U —7 —2
hia1 -8 -9 0 =5
e hoo | =12 =13 | —4 -1
r E(r)  T(r)
(911,h11) —15 (G, H,)
(g11.h12) —14  (G1. Hy)
(g12,h22) —13 (G1, H3)
(911, haz) =12 (Gy, Ha)
(g12.h1n) =11 (G, Hy)
(g12:h12)  —10 (G, Hy)
(12, har) =9 (G, Hy)
(g11.ha1) =8 (G, Ho)
(g21,h12) =7 (G2, Hy)
(g21,h11) -6 (Ga, Hy)
(922, h21) -5 (G2, H2)
(g21.hoa) —4  (Ga, Hy)
(922, ha1) 3 (Ga, Hy)
(go2, h12) =2 (Gs, Hy)
(g2o. haa) =1 (Ga, Ha)
(g21, ho1) () (G, Hy)

Fromer M, Yanover, C. Proteins (2008)
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4. tBMMF (4) Example: tBMMF (2)

r1 € Rots: |,

Fromer M, Yanover, C. Proteins (2008)
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Results

hGH-hGHR

-~

114M 10U9

(a+b) all beta e

all alpha

CaM-smMLCK CaM-skMLCK
Top7

1CDL 9BBM Sl
1QYS
(a+b) 49

all alpha all alpha

Fromer M, Yanover, C. Proteins (2008)



Results (2)

Num. Positions (Chains®)  Search Space Cardinality (log,,)

Rotamer Library

Design Shell® Sequence Rotamer td-DEES Readd Added®
ST, prion 7 (A) 7 (B) 8.95 31.88 26.60 Full X1 X2
SspB 8 (A C) 0 10.23 24.82 24.07 Full X1, X2
hGH-hGHR 1 6 (A) »>135 (A.DB) 7.67 238.95 168.01 Full X1, X2
hGH-hGHR 2 6 (A) 135 (AB) 7.67 237.63 164.78 Full X1, X2
Vepiy  DGHWGHR3 5 (A) 136 (AB) 6.39 235.01 163.43 Full .
hGH-hGHR 4 6 (A) 135  (A,B) 7.67 237.68 167.38 Full X1s X2
hGH-hGHR 5 6 (A) 135 (A.B) 7.67 236.49 159.71 Full X1, X2
hGH-hGHR 6 6 (A) 135 (A.B) 7.67 237.25 163.53 Full X1, X2
— CaM-smMLCK 24 (A) 19 (B) 30.69 86.07 82.18 Limited X1
CaM-skMLCK 24 (A) 19 (B) 30.69 80.63 73.75  Limited X1
Fis o hGH-hGHR 35 (A) 106 (A.B) 44,76 213.89 167.32 Limited X1
TopT 92 (A) 0 117.65 202.20 200.19 Limited —

2Peptide chains to which the corresponding positions belong, labeled arbitrarily.
bNon-designed, conformationally varying positions.

“Rotamer space cardinality after application of type-dependent Goldstein DEE.

dFull: all rotamers read from library; Limited: highest probability rotamers read.

“Side-chain angles around which additional rotamers were super-sampled from library rotamers.

Fromer M, Yanover, C. Proteins (2008)
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Results(3)

* Algorithms tried:
- DEE / A* (Goldstein, 1-split, 2-split, Magic Bullet)
- tBMMF
- Ros: Rosetta
- SA: Simulated annealing over sequence space
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Results (4): Assessment results

SMALL MEDIUM LARGE 1 LARGE 2
prion hGH-hGHR 1 CaM-smMLCK hGH-hGHR
100 100 100 100

)

]

=

3}

e

E 50 50 50 50

wn

3

—

5 0] * 0 0 0

tBMMF A Ros SA tBMMF Ros SA tBMMF Ros SA tBMMF Ros SA

Fromer M, Yanover, C. Proteins (2008)
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Results(5)

CaM-smMLCK CaM-skMLCK hGH-hGHR

Energy

| - tBMMF © Ros + Ros* © SA = SA*|

s el

¥ Airg sl e o e faiit)
H 10 i . it [P e O PO e o T
t 0 OO0 e o LT T i E o iR prbH

i i 1 P 1 1 L L 3
60 80 100 20 40 60 80 100

80 100 g 20 40
m-th Top Sequence m-th Top Sequence

20 40 60
m-th Top Sequence

Fromer M, Yanover, C. Proteins (2008)
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Results(6)

Table |. Assessment and Analysis of the Algorithms Tested

tBMMF Ros SA A* (A* Rotamer Space)

Top Time Top Time Top Time Top? Time td-DEEP DEE®

Small  prion 100% 58.9m 86% 93h100% 12h 100% 3.4m 2660 —* 1168
SspB 100% 11Th100% 11.4h 37% 3Eh jqd 3d 2407 — 1591
Medium hGH-hGHR 1 88% 134 h 30% 21d 2% 7.3 dFailed 12d 168.01 —* 131.81
hGH-hGHR 2 60% 76h&0% 2d 0% 59dFailed 12d 16478 —* 13061
hGH-hGHR 3 100% 4.1h 73% 17d 0% 59dFailed 12d 16343 —* 12858
hGH-hGHR 4 100% 85h 22% 21d 0% 7.4dFailed 12d 16738 — 134.18
hGH-hGHR S 100% 29h 27% 2d 0% 58dFailed 12d 158971 —* 12098
hGH-hGHRE 100% 85h 42% 22d 0% 6.1dFailed 12d 16353 —* 132.21
Large 1 CaM-smMLCK 73% 106h 18% 18h 23% 1 d Failed 12d 8218 —* 4597
CaM-skMLCK 100% 2h 0% 107 h 0% 207 h Failed 7.2d 7375 — 47.41
Large 2 hGH-hGHR  100% 176 h 0% 2d 0% 23dFailed 12d 167.32 —* 11563
Top?  Fromer@¥fhYariovbr3Ch Profeinf2008)7 d Failed 12d 200.13 — 168.38




Results(6)

Table |. Assessment and Analysis of the Algorithms Tested

tBMMF Ros SA A* (A* Rotamer Space)

Top Time Top Time Top Time Top? Time td-DEEP DEE®

Small  prion 100% 58.9m 86% 93 h100% 12h 100% 3.4m 2660 —* 1168
SspB 100% 11T h100% 11.4h 37% 3Eh jqd 3d 2407 — 1591
Medium hGH-hGHR 1 88% 13.4h 30% 2.14d EQV 7.3 d Failed 12d 168.01 —* 131.81
hGH-hGHR 2 60% 76h&0% 2d 0% 59dFailed 12d 16478 —* 13061
hGH-hGHR 3 100% 4.1h 73% 17d 0% 59dFailed 12d 16343 —* 12858
hGH-hGHR 4 100% 85h 22% 21d 0% 7.4dFailed 12d 16738 — 134.18
hGH-hGHR S 100% 29h 27% 2d 0% 58dFailed 12d 158971 —* 12098
hGH-hGHRE 100% 85h 42% 22d 0% 6.1dFailed 12d 16353 —* 132.21
Large 1 CaM-smMLCK 73% 106h 18% 18h 23% 1 d Failed 12d 8218 —* 4597
CaM-skMLCK 100% 2h 0% 107 h 0% 207 h Failed 7.2d 7375 — 47.41
Large 2 hGH-hGHR  100% 176 h 0% 2d 0% 23dFailed 12d 167.32 —* 11563
Top? 69% 7.1h31% 15d 0% 1.7 dFailed 12d 20019 —* 168.38

Fromer M, Yanover, C. Proteins (2008)



Results (7)

« DEE/A™ was not feasible for any case except
the prion

» SspB: A* could only output one sequence
 DEE also did not finish after 12 days
 BD/K* did not finish after 12 days
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Results (8)

* Predicted sequences where highly similar
between themselves. (high sequence identity)

» Very different from wild type sequence

» Solution: grouped tBMMF: apply constraints to
whole groups of amino acids — proof of concept

only
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Conclusions

* Fast and accurate algorithm
* Qutperforms all other algorithms:

- A* is not feasible
— Better accuracy than other probabilistic algorithms
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Conclusions (2)

 tBMMF produces a large set of very similar low
energy results.

* This might be due to the many inaccuracies in
the model

* Grouped tBMMF can produce a diverse set of
low energy sequences
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Conclusions (3)

* The results lack experimental data for
validation.
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Related Work: (Fromer et al. 2008)

 Fromer F, Yanover C. A computational
framework to empower probabilistic protein
design. ISMB 2008

 Phage display:
- 10°- 10" randomized protein sequences

- Simultaneously tested for relevant biological
function
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Related Work: (Fromer et al. 2008)
WT protein
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Fromer M, Yanover, C. Bioinformatics (2008) N



Related Work: (Fromer et al. 2008)

e Uses sum-product instead of max-product
* Obtain per-position amino acid probabilities

* Tried until convergence or 100000 iterations; all
structures converged
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Related Work: (Fromer et al. 2008)

e Conclusions:

- Model results in probability distributions far from
those observed experimentally.

— Limitations of the model:

* Imprecise energy function
 Decomposition into pairwise energy terms
* Assumption of a fixed backbone

* Discretization of side chain conformations
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for m «— 1 to M do

if m = 1 then
Cons™ « ()
else
/* t, p'", ¢ are the sub-space,
position, rotamer to yield the
next lowest energy sequence  */
t" «— arg maxBM M
<
4 —T{G") // aa type of ¢'"
// Add pos. constraint to Cons™:
Cons™ OGHSLW U {?‘p’m € RG!’:S?}# s |u.}
// Add neg. constraint to Cons'"
Cons'™ « Cons'" U{r,m ¢ Rotsym |a}
Run BP to obtain: MM, (q) |const™
CalcBMM(t"™) // calculate BMM!"
end
Run BP to obtain: MM,(q) [consm
fori— 1 to N do
ri" «— arg max MM;(7;) |consm
i€ Hots;
Sm — T(r™) £ ith aa of mth seq.
end
CalcBMM(m) // calculate BMM™
end
return {S"}M_

tBMMF algorithm

/* Use MM,(q) |consn to calculate the BMM

for constrained sub-space n

20 Function CalcBMM(n)

(p",q") «— arg max MM,(q) |consn

21 pa: T(q)#FS)
22 BM Mn — MMT,“ [{q”} |l.‘:'}'r:--.r:.'-l'i'2
23 end

*f
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