# Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space 

Pablo Gainza<br>CPS 296: Topics in Computational Structural Biology Department of Computer Science Duke University

## Outline

1) Problem definition
2) Formulation as an inference problem
3) Graphical Models
4) tBMMF algorithm
5) Results
6) Conclusions

## 1. Problem Definition



1. Problem Definition (2)

$r_{i} \rightarrow$ Rotamer at position $i$ for RA $r$
2. Problem Definition (3)
$E_{i}\left(r_{i}\right) \rightarrow$ Energy between rotamer $r_{i}$ and fixed backbone $E_{i j}\left(r_{i}, r_{j}\right) \rightarrow$ Energy between rotamers $r_{i}$ and $r_{j}$

$E(r) \rightarrow$ Energy of rotamer assignment $r$

$$
E(r)=\sum_{i} E_{i}\left(r_{i}\right)+\sum_{i, j} E_{i j}\left(r_{i}, r_{j}\right)
$$

## 1. Problem Definition (4)

$\mathrm{T}(\mathrm{k}) \rightarrow$ returns amino acid type of rotamer $k$
$\mathrm{T}(\mathrm{r}) \rightarrow$ returns sequence of rotamer assignment $r$


$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{r}_{1}\right)=\text { hexagon } \\
& \mathrm{T}\left(\mathrm{r}_{2}\right)=\text { cross } \\
& \mathrm{T}(\mathrm{r})=\text { hexagon }, \text { cross }
\end{aligned}
$$

1. Problem Definition (5)


## 1. Problem Definition (6)



Probabilistic Methods


## 1. Problem Definition (7)



Protein structure


Model $\longrightarrow$ Inaccurate!

1. Problem Definition (8)

Protein design
algorithm
Algorithm
-
Fast or provable

## 1. Problem Definition (9)



## 1. Problem Definition (10)



## Problem Definition: Summary

- Protein design algorithms search for the sequence with the Global Minimum Energy Conformation (GMEC).
- Our model is inaccurate: more than one low energy sequence is desirable.
- Fromer et al. Propose tBMMF to generate a set of low energy sequences.


## 2. Our problem as an inference problem

Probabilistic factor for self-interactions

$$
\psi_{i}\left(r_{i}\right)=e^{\frac{-E_{i}\left(r_{i}\right)}{T}}
$$

Probabilistic factor for pairwise interactions

$$
\psi_{i j}\left(r_{i}, r_{j}\right)=e^{\frac{-E_{i j}\left(r_{i}, r_{j}\right)}{T}}
$$

2. Inference problem (2)

Partition function

$$
Z=\sum_{r} e^{\frac{E(r)}{T}}
$$

Probability distribution for rotamer assignment $r$

$$
P\left(r_{1}, \ldots, r_{N}\right)=\frac{1}{Z} \prod_{i} \psi_{i}\left(r_{i}\right) \prod_{i, j} \psi_{i j}\left(r_{i}, r_{j}\right)=\frac{1}{Z} e^{\frac{-E(r)}{T}}
$$

2. Inference problem (3)

Minimization goal (from definition)

$$
S^{*}=\mathrm{T}\left(\arg \min _{r} E(r)\right)
$$



Minimization goal for a graphical model problem

$$
S^{*}=\mathrm{T}\left(\arg \max _{r} \operatorname{Pr}(r)\right)
$$

2. Inference problem (4)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$



Allowed


$$
\begin{aligned}
& E\left(r^{\prime}\right)=? \\
& E\left(r^{\prime \prime}\right)=?
\end{aligned}
$$

2. Inference problem (5)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$



Allowed


$$
\begin{aligned}
E\left(r^{\prime}\right) & =(-1+-2)+(-5+-2) \\
& =-10
\end{aligned}
$$

$$
E\left(r^{\prime \prime}\right)=(-1+-4)+(-3+-4)
$$

$$
=-12
$$

$r^{\prime \prime}$ is our GMEC
2. Inference problem (6)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$


$T=1$ (for our example)

Allowed



$$
\begin{aligned}
& \psi_{i}\left(r_{1}^{\prime}\right)=e^{\frac{-E_{i}\left(r_{1}^{\prime}\right)}{T}}=e \\
& \psi_{i}\left(r_{2}^{\prime}\right)=e^{\frac{-E_{i}\left(r_{2}^{\prime}\right)}{T}}=e^{5} \\
& \psi_{i}\left(r_{1}^{\prime \prime}\right)=e^{\frac{-E_{i}\left(r_{1}^{\prime \prime}\right)}{T}}=e \\
& \psi_{i}\left(r_{2}^{\prime \prime}\right)=e^{\frac{-E_{i}\left(r_{2}^{\prime \prime}\right)}{T}}=e^{3}
\end{aligned}
$$

2. Inference problem (7)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$



Allowed


$$
\begin{aligned}
& \psi_{i j}\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=e^{\frac{-E_{i j}\left(r_{1}^{\prime}, r_{2}^{\prime}\right)}{T}}=e^{2} \\
& \psi_{i j}\left(r_{1}^{\prime \prime}, r_{2}^{\prime \prime}\right)=e^{\frac{-E_{i j}\left(r_{1}^{\prime \prime}, r_{2}^{\prime \prime}\right)}{T}}=e^{4} \\
& Z=\sum_{r} e^{\frac{E(r)}{T}}=e^{10}+e^{12}
\end{aligned}
$$

2. Inference problem (8)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$



$$
\begin{aligned}
& P\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\frac{1}{Z} \prod_{i} \psi_{i}\left(r_{i}^{\prime}\right) \prod_{i, j} \psi_{i j}\left(r_{i}^{\prime}, r_{j}^{\prime}\right) \\
& =\frac{e^{10}}{e^{10}+e^{12}}
\end{aligned}
$$

$T=1$ (for our example)
2. Inference problem (9)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$



Allowed


2

$$
\begin{aligned}
& P\left(r_{1}^{\prime \prime}, r_{2}^{\prime \prime}\right)=\frac{1}{Z} \prod_{i} \psi_{i}\left(r_{i}^{\prime}\right) \prod_{i, j} \psi_{i j}\left(r_{i}^{\prime \prime}, r_{j}^{\prime \prime}\right) \\
& \quad=\frac{e^{12}}{e^{10}+e^{12}}
\end{aligned}
$$

2. Inference problem (10)

$$
E_{i j}\left(r_{1}, r_{2}\right)
$$

Position \#1


$$
E_{i}\left(r_{1}\right) \quad E_{i}\left(r_{2}\right)
$$



$$
\begin{aligned}
& S^{*}=\mathrm{T}\left(\arg \max _{r} \operatorname{Pr}(r)\right) \\
& S^{*}=\mathrm{T}\left(r^{\prime \prime}\right)
\end{aligned}
$$

2. Inference problem (11)

Minimization goal (from definition)

$$
S^{*}=\mathrm{T}\left(\arg \min _{r} E(r)\right)
$$

Minimization goal for a graphical model problem

$$
S^{*}=\mathrm{T}\left(\arg \max _{r} \operatorname{Pr}(r)\right)
$$

We still have a non-polynomial problem!


But formulated as an inference problem

Probabilistic methods

## Summary: Inference problem

- We model our problem as an inference problem.
- We can use probabilistic methods to solve it.


## 3. Graphical models for protein design and belief propagation (BP)



Source: Fromer M, Yanover, C. Proteins (2008)
SspB dimer interface: Inter-monomeric interactions (Ca)
3. Graphical Models/BP (2)

3. Graphical Models/BP (3)

Example: Belief propagation

edge: energy
interaction between two residues.
edge: causal relationship between
two nodes

If two residues are distant from each other, no edge between them.
3. Graphical Models/BP (4)

3. Graphical Models/BP (5)

3. Graphical Models/BP (6)

## Example: Belief propagation



Belief propagation: each node tells its neighbors nodes what it believes their state should be

A message is sent from node $\mathbf{i}$ to node j

The message is a vector where \# of dimensions: allowed states/rotamers in recipient


Who sends the first message?

In a tree: the leaves

- Belief propagation is proven to be correct in a tree!

Who sends the first message?

In a graph with cycles:

- Set initial values
- Send in parallel

No guarantees can be made! There might not be any convergence
3. Graphical Models/BP (10)

Example: Belief propagation

We iterate from there.

3. Graphical Models/BP (11)

Example: Belief propagation

Node 3 receives messages from nodes 1 and 2

$$
\begin{aligned}
& m_{r \rightarrow \mu}\left(r_{\dot{\mu}}^{\dot{\mu}}\right)=1 \\
& \hline m_{r \rightarrow \boldsymbol{r}}\left(r_{\ddot{\mu}}^{\ddot{*}}\right)=1
\end{aligned}
$$



## 3. Graphical Models/BP (12)

What message does node 3 send to node 1 on the next iteration?


## Belief propagation: message passing

## $N(i) \rightarrow$ Neighbors of variable $i$

Message that gets sent on each iteration

$$
m_{i \rightarrow j}\left(r_{j}\right)=\max _{r_{i}}\left(e^{\frac{-E_{i}\left(r_{i}\right)-E_{i j}\left(r_{i}, r_{j}\right)}{t}} \prod_{k \in N(i) \backslash j} m_{k \rightarrow i}\left(r_{i}\right)\right.
$$


3. Graphical Models/BP (15)

## Example: Belief propagation

Once it converges we can compute the belief each node has about itself

Belief about one's state:
Multiply all incoming messages by singleton energy

## Belief propagation: Max-marginals

Belief about each rotamer

$$
M M_{i}\left(r_{i}\right)=e^{\frac{-E_{i}\left(r_{i}\right)}{t}} \prod_{k \in N(i)} m_{k \rightarrow i}\left(r_{i}\right)
$$

$$
\operatorname{Pr}_{i}^{\infty}\left(r_{i}\right)=\max _{r^{\prime}: r_{i}^{\prime}=r_{i}} \operatorname{Pr}\left(r^{\prime}\right)
$$

"Most likely" rotamer for position i

$$
r_{i}^{*}=\arg \max _{r_{i} \in \operatorname{Rots}_{i}} \operatorname{Pr}_{i}^{\infty}\left(r_{i}\right)
$$

3. Graphical Models/BP (17)


Fromer M, Yanover, C. Proteins (2008)


Fromer M, Yanover, C. Proteins (2008)
3. Graphical Models/BP (18)


Fromer M, Yanover, C. Proteins (2008)


## 3. Graphical Models: Summary

- Formulate as an inference problem
- Model our design problem as a graphical model
- Establish edges between interacting residues
- Use Belief Propagation to find the beliefs for each position


## 4. tBMMF: type specific BMMF

- Paper's main contribution
- Builds on previous work by C. Yanover (2004)
- Uses Belief propagation to find lowest energy sequence and constrains space to find subsequent sequences


## TBMMF (simplification)

- 1. Find the lowest energy sequence using BP

2. Find the next lowest energy sequence while excluding amino acids from the previous one
3. Partition into two subspaces using constraints according to the next lowest energy sequence
A

| * | aa | aa | Position \#1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $G_{1}$ |  | $G_{2}$ |  |
|  |  | rot. | $g_{11}$ | $g_{12}$ | $g_{21}$ | $g_{22}$ |
|  |  | $h_{11}$ | -15 | -11 | -6 | -3 |
| . | $H_{1}$ | $h_{12}$ | -14 | -10 | -7 | -2 |
| \% |  | $h_{21}$ | -8 | -9 | 0 | -5 |
| 2 | $\mathrm{H}_{2}$ | $h_{22}$ | -12 | -13 | -4 | -1 |

B

| $r$ | $E(r)$ | $T(r)$ |
| :---: | :---: | :---: |
| $\left(g_{11}, h_{11}\right)$ | -15 | $\left(G_{1}, H_{1}\right)$ |
| $\left(g_{11}, h_{12}\right)$ | -14 | $\left(G_{1}, H_{1}\right)$ |
| $\left(g_{12}, h_{22}\right)$ | -13 | $\left(G_{1}, H_{2}\right)$ |
| $\left(g_{11}, h_{22}\right)$ | -12 | $\left(G_{1}, H_{2}\right)$ |
| $\left(g_{12}, h_{11}\right)$ | -11 | $\left(G_{1}, H_{1}\right)$ |
| $\left(g_{12}, h_{12}\right)$ | -10 | $\left(G_{1}, H_{1}\right)$ |
| $\left(g_{12}, h_{21}\right)$ | -9 | $\left(G_{1}, H_{2}\right)$ |
| $\left(g_{11}, h_{21}\right)$ | -8 | $\left(G_{1}, H_{2}\right)$ |
| $\left(g_{21}, h_{12}\right)$ | -7 | $\left(G_{2}, H_{1}\right)$ |
| $\left(g_{21}, h_{11}\right)$ | -6 | $\left(G_{2}, H_{1}\right)$ |
| $\left(g_{22}, h_{21}\right)$ | -5 | $\left(G_{2}, H_{2}\right)$ |
| $\left(g_{21}, h_{22}\right)$ | -4 | $\left(G_{2}, H_{2}\right)$ |
| $\left(g_{22}, h_{11}\right)$ | -3 | $\left(G_{2}, H_{1}\right)$ |
| $\left(g_{22}, h_{12}\right)$ | -2 | $\left(G_{2}, H_{1}\right)$ |
| $\left(g_{22}, h_{22}\right)$ | -1 | $\left(G_{2}, H_{2}\right)$ |
| $\left(g_{21}, h_{21}\right)$ | 0 | $\left(G_{2}, H_{2}\right)$ |

Fromer M, Yanover, C. Proteins (2008)


## Results



## Results (2)

|  |  | Num. Positions (Chains ${ }^{\text {a }}$ ) |  |  |  | Search Space Cardinality ( $\log _{10}$ ) |  |  | Rotamer Library |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Design |  | Shell ${ }^{\text {b }}$ |  | Sequence | Rotamer | td-DEE ${ }^{\text {c }}$ | Read ${ }^{\text {d }}$ | Added ${ }^{\text {e }}$ |
| Small | prion | 7 | (A) | 7 | (B) | 8.95 | 31.88 | 26.60 | Full | $\chi_{1}, \chi_{2}$ |
|  | SspB | 8 | (A,C) | 0 |  | 10.23 | 24.82 | 24.07 | Full | $\chi_{1}, \chi_{2}$ |
| Medium | hGH-hGHR 1 | 6 | (A) | -135 | (A,B) | 7.67 | 238.95 | 168.01 | Full | $\chi_{1}, \chi_{2}$ |
|  | hGH-hGHR 2 | 6 | (A) | 135 | $(\mathrm{A}, \mathrm{B})$ | 7.67 | 237.63 | 164.78 | Full | $\chi_{1}, \chi_{2}$ |
|  | hGH-hGHR 3 | 5 | (A) | 136 | $(\mathrm{A}, \mathrm{B})$ | 6.39 | 235.01 | 163.43 | Full | $\chi_{1}, \chi_{2}$ |
|  | hGH-hGHR 4 | 6 | (A) | 135 | $(\mathrm{A}, \mathrm{B})$ | 7.67 | 237.68 | 167.38 | Full | $\chi_{1}, \chi_{2}$ |
|  | hGH-hGHR 5 | 6 | (A) | 135 | (A,B) | 7.67 | 236.49 | 159.71 | Full | $\chi_{1}, \chi_{2}$ |
|  | hGH-hGHR 6 | 6 | (A) | 135 | (A,B) | 7.67 | 237.25 | 163.53 | Full | $\chi_{1}, \chi_{2}$ |
| Large 1 | CaM-smMLCK | 24 | (A) | 19 | (B) | 30.69 | 86.07 | 82.18 | Limited | $\chi_{1}$ |
|  | CaM-skMLCK | 24 | (A) | 19 | (B) | 30.69 | 80.63 | 73.75 | Limited | $\chi_{1}$ |
| Large 2 | hGH-hGHR | 35 | (A) | 106 | (A,B) | 44.76 | 213.89 | 167.32 | Limited | $\chi_{1}$ |
|  | Top7 | 92 | (A) | 0 |  | 117.65 | 202.20 | 200.19 | Limited | - |

${ }^{\text {a }}$ Peptide chains to which the corresponding positions belong, labeled arbitrarily.
${ }^{\mathrm{b}}$ Non-designed, conformationally varying positions.
${ }^{c}$ Rotamer space cardinality after application of type-dependent Goldstein DEE.
${ }^{\mathrm{d}}$ Full: all rotamers read from library; Limited: highest probability rotamers read.
eside-chain angles around which additional rotamers were super-sampled from library rotamers.

Fromer M, Yanover, C. Proteins (2008)

## Results(3)

- Algorithms tried:
- DEE / A* (Goldstein, 1-split, 2-split, Magic Bullet)
- tBMMF
- Ros: Rosetta
- SA: Simulated annealing over sequence space


## Results (4): Assessment results

SmaLL prion


Medium
GH-hGHR 1


LARGE 1
LARGE 2
CaM-smMLCK



Fromer M, Yanover, C. Proteins (2008)

## Results(5)

## CaM-smMLCK

CaM-skMLCK
hGH-hGHR


Fromer M, Yanover, C. Proteins (2008)

## Results(6)

Table I. Assessment and Analysis of the Algorithms Tested


## Results(6)

Table I. Assessment and Analysis of the Algorithms Tested


Fromer M, Yanover, C. Proteins (2008)

## Results (7)

- DEE/A* was not feasible for any case except the prion
- SspB: A* could only output one sequence
- DEE also did not finish after 12 days
- BD/K* did not finish after 12 days


## Results (8)

- Predicted sequences where highly similar between themselves. (high sequence identity)
- Very different from wild type sequence
- Solution: grouped tBMMF: apply constraints to whole groups of amino acids - proof of concept only


## Conclusions

- Fast and accurate algorithm
- Outperforms all other algorithms:
- A* is not feasible
- Better accuracy than other probabilistic algorithms


## Conclusions (2)

- tBMMF produces a large set of very similar low energy results.
- This might be due to the many inaccuracies in the model
- Grouped tBMMF can produce a diverse set of low energy sequences


## Conclusions (3)

- The results lack experimental data for validation.


## Related Work: (Fromer et al. 2008)

- Fromer F, Yanover C. A computational framework to empower probabilistic protein design. ISMB 2008
- Phage display:
- $10^{9}$ - $10^{10}$ randomized protein sequences
- Simultaneously tested for relevant biological function


## Related Work: (Fromer et al. 2008)



Fromer M, Yanover, C. Bioinformatics (2008)

## Related Work: (Fromer et al. 2008)

- Uses sum-product instead of max-product
- Obtain per-position amino acid probabilities
- Tried until convergence or 100000 iterations; all structures converged


## Related Work: (Fromer et al. 2008)

- Conclusions:
- Model results in probability distributions far from those observed experimentally.
- Limitations of the model:
- Imprecise energy function
- Decomposition into pairwise energy terms
- Assumption of a fixed backbone
- Discretization of side chain conformations


## tBMMF algorithm

```
for }m\leftarrow1\mathrm{ to }M\mathrm{ do
    if m}=1\mathrm{ then
Cons}\mp@subsup{}{}{m}\leftarrow
    else
            /* t}\mp@subsup{t}{}{m},\mp@subsup{p}{}{\mp@subsup{t}{}{m}},\mp@subsup{q}{}{\mp@subsup{t}{}{m}}\mathrm{ are the sub-space,
                position, rotamer to yield the
                next lowest energy sequence */
            tm}\leftarrow\operatorname{arg}\operatorname{max}\mp@subsup{\textrm{BMM}}{}{\mp@subsup{m}{}{\prime}
                    m}<<
            a\leftarrow\mathcal{T}(\mp@subsup{q}{}{\mp@subsup{t}{}{m}})\quad// aa type of q}\mp@subsup{q}{}{\mp@subsup{t}{}{m}
            // Add pos. constraint to Cons }\mp@subsup{}{}{m}\mathrm{ :
            Cons }\mp@subsup{}{}{m}\leftarrow\mp@subsup{\mathrm{ Const}}{}{\mp@subsup{t}{}{m}}\cup{\mp@subsup{r}{\mp@subsup{p}{}{tm}}{m}\in\mp@subsup{\mathrm{ Rots sp}}{\mp@subsup{p}{}{tm}}{}\mp@subsup{|}{a}{}
            // Add neg. constraint to Cons }\mp@subsup{}{}{\mp@subsup{t}{}{m}}\mathrm{ :
            Cons}\mp@subsup{}{}{\mp@subsup{t}{}{m}}\leftarrow\mp@subsup{C}{0}{\prime}\mp@subsup{s}{}{\mp@subsup{t}{}{m}}\cup{\mp@subsup{r}{\mp@subsup{p}{}{\mp@subsup{t}{}{m}}}{}\not\in\mp@subsup{R}{0ots}{\mp@subsup{p}{\mp@subsup{t}{}{t}}{m}}\mp@subsup{|}{a}{}
            Run BP to obtain: MM 
            CalcBMM(tm}) // calculate BMM (t
    end
    Run BP to obtain: }\mp@subsup{\textrm{MM}}{p}{}(q)\mp@subsup{|}{\mp@subsup{\mathrm{ Consm}}{}{m}}{
    for }i\leftarrow1\mathrm{ to }N\mathrm{ do
            rim}\leftarrow\underset{\mp@subsup{r}{i}{}\in\mp@subsup{\mathrm{ Rotsi}}{i}{m}}{\operatorname{arg}\operatorname{max}}\mp@subsup{\textrm{MM}}{i}{}(\mp@subsup{r}{i}{})\mp@subsup{|}{\mp@subsup{\mathrm{ Cons}}{m}{m}}{
            S}\mp@subsup{\mathcal{S}}{i}{m}\leftarrow\mathcal{T}(\mp@subsup{r}{i}{m})\quad// i th aa of m th seq.
    end
    CalcBMM(m) // calculate BMM}\mp@subsup{}{}{m
    (\mp@subsup{p}{}{n},\mp@subsup{q}{}{n})\leftarrow\underset{p,q:\mathcal{T}(q)\not=\mp@subsup{\mathcal{S}}{p}{n}}{\operatorname{arg}\operatorname{max}}\mp@subsup{\textrm{MM}}{p}{(q)}\mp@subsup{|}{\mp@subsup{Cons}{}{n}}{}
    BMM}\mp@subsup{}{}{n}\leftarrow\mp@subsup{\textrm{MM}}{\mp@subsup{p}{}{n}}{}(\mp@subsup{q}{}{n})\mp@subsup{|}{\mathrm{ Cons }}{
end
```

/* Use $\left.\mathrm{MM}_{p}(q)\right|_{\text {Cons }^{n}}$ to calculate the BMM for constrained sub-space $n$

```
20 Function CalcBMM(n)
```

```
20 Function CalcBMM(n)
```

