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INTRODUCTION

Accurate computational protein and drug design

requires a biophysically reasonable representation of pro-
tein conformations and an efficient method to search pro-

tein conformational and sequence space. The full confor-
mational and sequence space available to a protein is too

vast to search completely. One approach to this problem
is to model the overall fold of a protein on a coarse level

and then to introduce additional detail as needed; this has
allowed the de novo design of proteins with a desired over-

all fold.1–3 Alternatively, a protein or protein–ligand com-
plex similar to an experimentally determined structure can

be modeled by searching conformations similar to the em-
pirical structure,4–6 allowing design of novel proteins or

protein-binding drugs.7–11 In this case, the conforma-

tional search space can be represented by choosing a set of

flexible residues, whose conformations are likely to change

in response to mutations or new ligands. For protein

design, the search can be performed over sequence space
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ABSTRACT

Computational protein and drug design generally require accurate modeling of protein conformations. This modeling typi-

cally starts with an experimentally determined protein structure and considers possible conformational changes due to muta-

tions or new ligands. The DEE/A* algorithm provably finds the global minimum-energy conformation (GMEC) of a protein

assuming that the backbone does not move and the sidechains take on conformations from a set of discrete, experimentally

observed conformations called rotamers. DEE/A* can efficiently find the overall GMEC for exponentially many mutant

sequences. Previous improvements to DEE/A* include modeling ensembles of sidechain conformations and either continuous

sidechain or backbone flexibility. We present a new algorithm, DEEPer (Dead-End Elimination with Perturbations), that

combines these advantages and can also handle much more extensive backbone flexibility and backbone ensembles. DEEPer

provably finds the GMEC or, if desired by the user, all conformations and sequences within a specified energy window of

the GMEC. It includes the new abilities to handle arbitrarily large backbone perturbations and to generate ensembles of

backbone conformations. It also incorporates the shear, an experimentally observed local backbone motion never before

used in design. Additionally, we derive a new method to accelerate DEE/A*-based calculations, indirect pruning, that is par-

ticularly useful for DEEPer. In 67 benchmark tests on 64 proteins, DEEPer consistently identified lower-energy conforma-

tions than previous methods did, indicating more accurate modeling. Additional tests demonstrated its ability to incorporate

larger, experimentally observed backbone conformational changes and to model realistic conformational ensembles. These

capabilities provide significant advantages for modeling protein mutations and protein–ligand interactions.

Proteins 2013; 81:18–39.
VVC 2012 Wiley Periodicals, Inc.
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as well because multiple amino acid types can be consid-

ered for each flexible residue. The conformation and

sequence of the entire protein is then represented as a

tuple of conformations and amino acid types for the flexi-

ble residues. Since the flexibility of protein sidechains is

mostly in their dihedral angles and these angles are usually

found in discrete clusters called rotamers,12,13 previous

algorithms have typically discretized the conformational

space of a residue into sidechain rotamers. Using an

energy function, which assigns an energy to each confor-

mation, this scheme casts protein design into a combina-

torial optimization problem. Empirical molecular-mechan-

ics energy functions are typically used for this pur-

pose.6,14

The sequence and structure of a native or designed

protein or complex can be modeled by finding its global

minimum-energy conformation (GMEC): the sequence

and conformation of the protein that minimize the

energy function. The GMEC, like any sequence and con-

formation, can be represented as a tuple of conforma-

tions and amino acid types of individual residues. How-

ever, consideration of the GMEC alone neglects impor-

tant entropic effects,15 because proteins in solution

populate many conformations. Consequently, considering

an ensemble of low-energy conformations results in more

accurate predictions of binding and catalysis.5,8,10,14,16

This has led to three main types of search methods over

protein conformational and sequence space: (a) stochastic,

heuristic methods that try to find the GMEC,15,17–22 (b)

methods to provably find the GMEC,14,23,24 and (c)

methods to generate conformational ensembles.5,14,16,25

All these methods require a biophysical model as input.

The biophysical model specifies not only the conforma-

tions and sequences available to the protein but also the

energy function used to score those conformations and

sequences. Often, the space of allowed conformations

and sequences is defined using (i) a starting structure,

(ii) a set of residues allowed to differ from the starting

structure, and (iii) a library of rotamers for those resi-

dues to populate. The allowed sequence space to search

may be just one sequence or an astronomical number of

combinatorial possibilities. Methods of type (c) may or

may not have provable guarantees of accuracy. Our lab

has developed methods of types (b) and (c)5,8,16,26–28

with provable guarantees of accuracy and successfully

tested them in vitro and in vivo, generating mutants and

ligands that may aid in synthetic biology10 and in the

treatment of bacterial diseases,7,10 cystic fibrosis,8

HIV,11 and leukemia.9

Because finding the GMEC is NP-hard,29,30 several

heuristic algorithms have been developed for this prob-

lem.18–22 These algorithms can find a relatively low-

energy conformation fairly rapidly, albeit without any

guarantees of completeness or accuracy. (We will refer to

an algorithm as complete if it is guaranteed to consider

its entire search space and as accurate if its answers are

always correct for the algorithm’s input, at least within a

given margin of error.) Metropolis Monte Carlo31-based

methods32,33 have been used to search the space of

rotamers. These methods can incorporate continuous

flexibility by applying the Monte Carlo with minimiza-

tion method,17 and have also incorporated some back-

bone flexibility.34 The GMEC has also been approxi-

mated by molecular-dynamics simulation of protein fold-

ing,15,35 offering the added benefit of modeling kinetics.

But molecular dynamics is rarely computationally tracta-

ble for protein design due to the large sequence space

and large number of folding intermediate states that

must typically be considered. Unlike DEEPer (Dead-End

Elimination with Perturbations), the algorithm intro-

duced in this work, molecular dynamics only considers

one sequence at a time. Genetic algorithms36 and nu-

merical global minimization methods22 have also been

used to search for the GMEC, and the heuristic FASTER

method,37 which combines deterministic and stochastic

steps, has been developed specifically for this search as

well.

Conversely, algorithms to provably find the GMEC are

also available.14,23,24 Because they are guaranteed to

find the optimal conformation and sequence given a bio-

physical model, they consider all functionally significant

conformational and sequence changes allowed by the

model, and thus they will generally produce more empir-

ically accurate results than heuristic algorithms using the

same model. Provable algorithms are also useful for eval-

uating and improving models because they ensure that

any discrepancies between experimental results and the

predictions of the algorithm are due solely to the inad-

equacies of the model and not to the algorithm.8,14,28

Most provable methods for identifying the GMEC start

by eliminating rotamers that cannot participate in the

GMEC, by using dead-end elimination (DEE).38 This

step is typically followed by the A* search algorithm,39

which finds the GMEC using the unpruned rotamers. If

A* is continued after the GMEC is found, it will output

the other conformations of the protein gap-free in

ascending order of energy. Thus, it can be used to iden-

tify all conformations whose energy is within a specified

energy interval Ew of the GMEC energy.

This DEE/A* framework has been extended to run

more efficiently, to model ensembles, and to include con-

tinuous flexibility, enhancements which come with prov-

able guarantees of accuracy and are applicable to the si-

multaneous search of mutant sequence space and confor-

mational space.14

First, DEE has been extended to eliminate more

rotamers as well as tuples of rotamers at different resi-

dues.40 The related Bounds41 and conformational-split-

ting DEE42 algorithms prune some rotamers that ordinary

DEE cannot prune. The HERO algorithm42 combines

these improvements into a single algorithm by applying

them successively and iteratively.
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Next, DEE/A* has also been extended to allow contin-

uous flexibility within each rotameric state, producing

‘‘minimization-aware’’ algorithms whose pruning is still

provable even with this continuous flexibility. In these

methods, the conformation is no longer uniquely defined

by a tuple of rotamers, but once a rotamer has been

assigned to each residue, the GMEC can be found by

local minimization. Correspondingly, the minimization-

aware pruning is followed by a modified A* search that

enumerates tuples of rotamers in order of a lower bound

on the conformational energy, rather than in order of the

conformational energy. The true conformational energies

are then obtained by local minimization. The minDEE

algorithm16 allows the sidechain dihedrals to vary con-

tinuously within a specified interval about the modal val-

ues for a given rotamer, while the BD26 and brDEE27

algorithms allow small backbone conformation adjust-

ments while modeling discrete sidechain rotamers. In

BD, the backbone is continuously flexible within a voxel.

In brDEE, the backbone states are discrete but systemati-

cally and closely spaced; the backbone states for each res-

idue are represented using a single parameter. iMin-

DEE,28 a significantly more efficient version of minDEE,

provides a more powerful minimization-aware pruning

criterion. ir denotes a rotamer r at residue position i in

the the protein, where r is chosen from a set R, and 1 �
i � n, where n is the number of residues in the protein.

It prunes a rotamer ir at a residue i if, for any other

rotamer it at residue i,

E�ðirÞ � E�ðitÞ þ
P
j 6¼i

minjsðE�ðir ; jsÞ � E�ðit ; jsÞÞ > Ew þ I

ð1Þ

where E§ is a lower bound on the internal energy of a

rotamer or the interaction energy for a pair of rotamers

(see Ref. 16 and Indirect Pruning section). I, the

‘‘pruning interval,’’ is an upper bound on the energy dif-

ference between the GMEC and the lowest lower bound

on a conformational energy, calculated by summing the

single-rotamer and pairwise lower-bound energies. This

equation will prune rotamers not found in conformations

within a user-specified energy interval Ew of the GMEC.

If only the GMEC is desired, Ew can be set to 0. In sum-

mary, methods based on DEE/A* are now available to

provably and efficiently find the GMEC in a search space

defined by sidechain rotamers as well as a small amount

of continuous flexibility in either the sidechains or the

backbone.

Finally, the K* algorithm5,14,16 compares the confor-

mational ensemble of a protein with a ligand to its

ensemble without the ligand. This is done by approxi-

mating their partition functions within a provably guar-

anteed margin of error (given the biophysical model). K*
is an extension for DEE/A* that can be applied to any of

the minimization-aware variants of DEE/A*, allowing the

modeling of continuous flexibility in computing partition

functions. Unlike GMEC-based analysis, this method

accounts for entropic effects, allowing substantial

improvements in the accuracy of binding predictions. K*
can identify tight-binding sequences from a large

sequence space efficiently and with provable accuracy. It

has been shown to optimize design for affin-

ity.5,8,10,14,16

Further increases in accuracy for modeling mutant or

new ligand-bound conformations require including more

backbone flexibility, simultaneously with continuous

sidechain flexibility (Table I). Three lines of evidence

support this need. First, mutations have often been found

to induce substantial backbone conformational

change.43–45 Second, modeling of continuous sidechain

flexibility has been found to substantially enhance the ac-

curacy of rotamer assignments and the identification of

low-energy sequences.28 Third, backbone as well as side-

chain degrees of freedom (DOFs) contribute significantly

to conformational ensembles.46,47 Thus, we present a

new algorithm, DEEPer, that incorporates continuous

sidechain and backbone flexibility in a provably complete

search. This search always finds the GMEC or a gap-free

list of the lowest-energy conformations, depending on

the user’s preference, and it interfaces directly with K* to

predict binding affinity using ensembles, maintaining K*’s

provable guarantees on accuracy but giving it the novel

ability to account for some backbone conformational en-

tropy. This means that it can estimate binding affinity

more accurately. To maintain search efficiency as this addi-

tional flexibility is added, increased pruning is necessary.

We show that a novel pruning algorithm, indirect pruning,

can alleviate the increased computational cost that is

incurred with substantial backbone flexibility, while main-

taining a provable guarantee of accuracy (Indirect Pruning

section). Indirect pruning combines the minimization

awareness of iMinDEE28 with features of Goldstein singles

and tuples pruning40 and Bounds pruning.41

DEEPer is also well-adapted for including backbone

perturbations based on information from previous

experiments. These can include backbone conformational

changes previously observed for the protein of interest, if

available, but we also feature two commonly observed

forms of backbone flexibility ‘‘moves,’’ the shear34,48 and

backrub.48 While the backrub has been incorporated in

previous design algorithms,27,34 the shear has not. Both

moves were identified in high-resolution crystal struc-

Table I
Continuous Flexibility in DEE-Based Protein Design Algorithms

Backbone flexibility

Sidechain flexibility

Discrete Continuous

None DEE38 minDEE,16 iMinDEE28

Discrete brDEE27 DEEPer
Continuous BD26 DEEPer

M.A. Hallen et al.
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tures by examination of anisotropic electron density and

of crystallographic alternates, which are multiple confor-

mations of the same segment of a protein that are each

observed in some portion of the molecules in a single

crystal. Backrubs also observably accommodate sequence

changes in natural proteins,49 thus validating their use

for accommodating engineered mutations in protein

design. Shears are expected to similarly aid searching of

combined conformational and sequence space. Shears

and backrubs are relatively small backbone perturbations,

so they are suitable for modeling backbone perturbations

within helix and sheet secondary structures, where the

backbone motion is limited. Together with the five other

types of perturbations implemented in DEEPer (Table

II), shears and backrubs allow a wide range of backbone

flexibility in all types of secondary structure.

Thus, by introducing DEEPer, this paper makes the

following contributions:

1. A provable algorithm for searching a continuously

flexible conformational space, including both side-

chain and backbone DOFs, as well as simultaneous

combinatorial search of mutant sequence space.

2. The extension of iMinDEE28 to minimize over back-

bone as well as sidechain degrees of freedom.

3. A general, provable method for introducing backbone

perturbations based on previous studies of protein

backbone flexibility, such as the shear motion, into

protein design calculations.

4. A provable method for modeling ensembles of confor-

mations in which conformations are allowed to vary

with respect to sidechain and backbone degrees of

freedom, during a search over combined sequence and

conformational space.

5. An implementation of DEEPer in our laboratory’s

open-source OSPREY protein-design software pack-

age,7,10,16,50 available by request as free software.

6. A new minimization-aware conformational pruning

algorithm, indirect pruning.

7. Computational tests on 64 proteins to demonstrate

that DEEPer identifies lower-energy structures and

sequences than previous methods, and tests to demon-

strate that it computes biophysically reasonable

ensembles of backbone conformations.

METHODS

DEEPer builds three new components onto iMin-

DEE.28 First, we introduce a new representation of

backbone flexibility, which we call perturbations (Pertur-

bations section). We introduce seven diverse types of

perturbations, some continuous and some discrete (Types

of Perturbations section). The second component is the

concept of a residue conformation, or RC (Residue

Conformations section). We can represent protein

conformations by assigning a RC to each residue. This is

analogous to the way that rigid-backbone methods like

iMinDEE represent protein conformations by assigning a

sidechain conformation to each residue. Taken together,

the concepts of perturbations and RCs provide a general

method for introducing DOFs affecting multiple residues

into the framework of DEE. The third component, indi-

rect pruning (Indirect Pruning section), is an enhance-

ment of the DEE algorithm designed to be especially

helpful in the presence of perturbations. These topics will

be discussed in the following subsections. The general

flow of the DEEPer algorithm is illustrated in Figure 1.

Perturbations

DEEPer searches the space of sidechain dihedrals

within a specified interval around the modal dihedral

value for each rotamer. This interval is � 98 by default,

except for proline, whose dihedrals cannot rotate freely.

All other flexibility is represented in the form of pertur-

bations, which can be any conformational adjustments

that commute with rotations of the non-proline side-

chain dihedrals (Fig. 2). The effect of each perturbation

is quantified using a single, scalar perturbation parame-

ter. Some perturbations can feasibly be represented using

a continuous range of perturbation parameter values,

while other perturbations admit only discrete values of

Table II
Types of Perturbations

Type Parameter Continuous Residues affected Where usually found

Sheara Primary shear angle Yes 4 Helices
Backrub Primary backrub angle Yes 3 b sheets, loops
Loop closure adjustmenta Solution from discrete set No 3 Loops
Secondary structure adjustmenta Solution from discrete set No 3–4 Loop-helix or

loop-sheet borders
Partial structure switch Structure from discrete set No As desired Anywhere
Full structure switch Structure from discrete set No All Entire protein
Proline flip Boolean: flip or no flip No 1 Prolines

aThese perturbations cannot, to our knowledge, be performed by any previous protein design algorithm. DEEPer also offers novel combinations of perturbations that

have been modeled previously; for example, no previous provable algorithm modeled overlapping backrubs. DEEPer is also novel in combining these perturbations with

continuous sidechain flexibility, which is represented as orthogonal to perturbations in conformational space.

DEEPer Flexible-Backbone Design Algorithm
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the perturbation parameter (see Types of Perturbations

section). These will be referred to as continuous and dis-

crete perturbations, respectively. Each perturbation has a

defined set of residues that it can affect. Perturbations

should be chosen to keep these sets of residues small

whenever possible, since the tractability of DEEPer relies

on relatively few perturbations affecting each residue.

Types of perturbations

We implemented DEEPer with seven types of pertur-

bations (Table II and Fig. 3). We will now describe the

implementation of each of these perturbations.

First of all, backrubs [Figs. 3(a) and 4(a)] are applied

as in brDEE.27 Briefly, if the backrub affects residues i

through i 1 2, the section of protein chain between resi-

due i’s Ca and residue i 1 2’s Ca is rotated about the

axis defined by those two Cas, and the rotation angle,

that is, the ‘‘primary backrub angle,’’ is the perturbation

parameter. Then, to reduce bond-angle distortion and

maintain any pre-existing hydrogen bonds, a smaller

counter-rotation is applied about the peptide plane’s Ca-

Ca axis for both of the peptide planes in this section of

protein chain. The angle of each counter-rotation is 70%

of the angle that minimizes the displacement of the car-

bonyl oxygen caused by the backrub. In addition to mov-

ing the backbone, backrubs reorient the sidechain of resi-

due i 1 1 in a direction perpendicular to the local chain

direction. Backrubs tend to be found in extended confor-

mations: b sheets or loops in which the mainchain is rel-

atively extended.48

Conversely, shears [Figs. 3(b), and 5] move the central

peptide of a three-peptide segment parallel to the chain

direction; they occur primarily in a helices, particularly

at the termini (Jane and David Richardson, personal

communication). Shears have previously been proposed

by Smith and Kortemme.34 The shear motion, if affect-

ing residues i through i 1 3, rotates the mainchain

atoms from residue i’s Ca to residue i 1 1’s Ca as well as

residue i 1 1’s sidechain about residue i’s Ca in the plane

defined by residue i’s Ca, residue i 1 1’s Ca, and residue

i 1 2’s Ca. The angle of this rotation, that is, the

‘‘primary shear angle’’, is the perturbation parameter.

Then residue i 1 2’s sidechain and the mainchain seg-

ment from residue i 1 2’s Ca to residue i 1 3’s Ca are

rotated as a rigid body about residue i 1 3’s Ca in the

plane defined by residue i 1 1’s Ca, residue i 1 2’s Ca,

and residue i 1 3’s Ca. The angle of rotation is calcu-

lated to keep the distance between residue i 1 1’s Ca

and residue i 1 2’s Ca at its unperturbed value. Finally,

the mainchain atoms between residue i 1 1’s Ca and res-

idue i 1 2’s Ca are rotated about the axis defined by

those Cas to make residue i 1 1’s carbonyl C0��O bond

vector as close as possible to its unperturbed direction.

As in the case of backrubs, this counter-rotation is

intended to maintain hydrogen bonds and reduce bond-

angle strain.

Thus, although they are local, affecting three to four

residues each, backrubs and shears together allow a given

Ca atom to move in any direction by a small amount.

The component rotations of shears and backrubs are

illustrated in Figure 4.

Loop closure adjustments [Fig. 3(c)] are also perturba-

tions affecting three residues, but unlike backrubs, they

do so without changing any bond angles or lengths. The

space of such motions is described in Ref. 52, and the

algorithm from that work is used to implement them. It

solves a system of polynomial equations, and each solu-

tion is associated with a possible conformation of the tri-

peptide. Given a residue i, these equations find the differ-

Figure 1
DEEPer begins with the selection of a set of perturbations to use (this

step may be manual or automated). These perturbations define a set of

RCs for each residue. RCs that cannot be in low-energy conformations

are pruned, using the new indirect pruning algorithm (Indirect Pruning

section) as well as previous pruning algorithms. A* with minimization
(see Introduction), as in iMinDEE,28 is then used to output low-energy

conformations. The result is the GMEC and a gap-free list of all

conformations and sequences within a user-specified interval Ew of the

GMEC. This list can be used to select mutant sequences to synthesize

for experimental testing, either (i) by selection of the sequences with

the lowest-energy conformations, or (ii) by a provably-good

approximation algorithm to calculate the binding affinities via the K*
software module.5,16 [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2
In DEEPer, the conformation of a protein is defined by multiple DOFs.

Sidechain dihedrals, such as the v1 dihedrals for the residues shown,

affect the conformation of only one residue. Perturbations, such as the

backrub shown, can affect the conformation of several residues (three in

this case; black balls denote the boundaries of the backbone region

affected by the backrub). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

M.A. Hallen et al.
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ent possible segments of protein chain from residue i’s

Ca to residue i 1 2’s Ca that maintain specified bond

angles, lengths, and x dihedrals without changing the

conformation of any other part of the protein at all. For

DEEPer, these specified values are taken from the pre-

perturbation conformation. The perturbation parameter

is a discrete index specifying which solution of the poly-

nomial equations is used to create the perturbed confor-

mation. Loop closure adjustments can be generated using

the same component rotations as backrubs [Fig. 4(a)],

although the angles of these rotations and the method by

which the angles are determined are completely different

(backrubs are biophysically feasible because the distor-

tions in bond angles are small, while loop closure adjust-

ments are biophysically feasible because the rotation

angles are computed to avoid any bond angle changes).

Secondary structure adjustments [Fig. 3(d)] are pertur-

bations that change secondary structure. If one of the

Figure 3
Types of perturbations implemented in DEEPer. Each perturbation is from red backbone and orange sidechains to blue backbone and purple

sidechains. Black balls denote the boundaries of the backbone region affected by the perturbation. (a) Backrub. (b) Shear. (c) Loop closure

adjustment. (d) Secondary structure adjustment. (e) Partial structure switch. (f) Full structure switch. Two crystal structures of the motor protein

Ncd related by a major conformational change are shown (PDB codes 2NCD51 and 1N6M43). (g) Proline flip. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

DEEPer Flexible-Backbone Design Algorithm
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Figure 4
Geometry of multistep perturbations. As in Figure 3, each perturbation is from red backbone and orange sidechains to blue backbone and purple

sidechains. (a) The two steps of a backrub perturbation, starting from an ideal poly-Ala b sheet. First, the dipeptide is rotated by the specified

amount (here, 1108) around the Ca1-Ca3 axis (left). Then, each individual peptide is rotated by some fraction (70% by default, here corresponding

to 27.08 and 25.68) of the amount needed to restore the two carbonyl oxygens to their original positions (right). These same rotations, albeit with

very different angles, are used for loop closure adjustments and secondary adjustments. (b) The three steps of a shear perturbation, starting from

an ideal poly-Ala a helix. First, the N-terminal peptide is rotated by the specified amount (here, 158) around Ca1 in the Ca1-Ca2-Ca3 plane (left).

Then, the C-terminal peptide is rotated around Ca4 in the Ca2-Ca3-Ca4 plane such that the original Ca2-Ca3 distance (dotted line) is maintained

(middle). Finally, the original middle peptide is rotated and translated to fit into the gap and to match the original carbonyl orientation (right).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5
The shear backbone motion. (a) Simple Ca-only representation of shear, viewed down the axis of an ideal a helix (light colors). Shears of 58
(darker) and 108 (darkest) swing the central Ca2-Ca3 peptide (cyan) sideways by coordinated rotations of the Ca1-Ca2 peptide (blue) and Ca3-Ca4

peptide (green). (b) All-atom representation of shear, viewed from the side of the ideal a helix (i.e., rotated 908 from (a)). Shears of 28 over a 108
range are shown. The central carbonyl is notably displaced parallel to the central peptide. One endpoint conformation is marked by balls and line

segments colored as in (a). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]



residues moved by a loop closure adjustment motion is

at the beginning or end of a helix or sheet while the

other two are in a loop, then the secondary structure of

the helix or sheet residue can effectively be changed to

loop structure. Alternatively, a similar motion can be

used to convert the first residue in a loop to the second-

ary structure of the residues preceding it, or to convert

the last residue in a loop to the secondary structure of

the residues following it. The backbone dihedrals of the

residue to be changed are adjusted to be appropriate for

the helix or sheet by copying the dihedrals of the adja-

cent helix or sheet residue. Then, the tripeptide on the

other side of the residue from the helix or sheet is placed

into the structure using the loop closure equations from

Ref. 52. The perturbation parameter is a discrete index

identifying a solution to the equations, as for a loop clo-

sure adjustment.

Partial structure switches [Fig. 3(e)] take a section of

backbone from another structure and replace the corre-

sponding section of the structure being modeled with it.

If needed, the new section of backbone is rotated and

translated to fit into the gap. The new and old sections

must be very similar in end-to-end length, because other-

wise it is impossible to insert the new section without

changing its backbone conformation significantly. How-

ever, the implementation offers two methods to slightly

adjust end-to-end length: scaling coordinates uniformly

or using the tripeptide closure method from Ref. 52.

Adjusting the length by more than 0.2 Å is set to raise an

error in the implementation of DEEPer. Partial structure

switches can be used to incorporate different ligand con-

formations, positions, and orientations as well. This per-

turbation allows the incorporation of experimentally

observed alternate backbone conformations–for example,

crystallographic alternates, NMR ensembles, or homolo-

gous structures (e.g., the canonical loop structures of

immunoglobulins53)–or computational predictions like

docking poses or computationally derived ensembles of

loop conformations (e.g., from the POOL algorithm54).

For a full structure switch [Fig. 3(f)], the entire system is

modeled with a different crystal structure (or other struc-

ture) for the perturbed RCs, so this affects all residues of

the system.

Proline flips [Fig. 3(g)] are perturbations that flip the

ring pucker of proline from endo to exo or vice versa,

thus flipping the signs of all the sidechain dihedrals. The

flipped geometry is based on Refs. 55 and 56. Switching

the proline peptide conformation from cis to trans, con-

versely, could be accomplished by a partial structure

switch. All perturbations are followed by a sidechain re-

idealization based on the Cb idealization in the KiNG

software package.57

We also implemented an automatic perturbation selec-

tion module, which generates perturbations and residue

conformations appropriate to the user’s specified flexible

residues. Partial and full structure switches can be

included if the user provides alternate-structure informa-

tion. The module includes a Ramachandran filter (using

data from Ref. 58) and, if chosen by the user, a filter to

keep the RMSD (root-mean-square displacement)

between the discrete backbone conformations that are

considered above a specified value (to ensure conforma-

tional diversity). The reader will find additional pertur-

bation implementation and selection details in the Sup-

porting Information (section B.1).

Residue conformations (RCs)

To use the perturbations described above, we require a

new way to represent possible conformational states. To

meet this need, DEEPer introduces residue conformations

(RCs), which are analogous to rotamers in traditional

DEE but also incorporate the perturbations as additional

degrees of freedom. In this section, we first introduce the

philosophy and nomenclature behind RCs. We then lay

out DEEPer’s strategy for representing RCs in the pres-

ence of perturbations affecting multiple residues, per-

forming energy minimization with the correct order of

operations even with noncommutative perturbations, and

adding special wild-type rotamers to some RCs.

Like rotamers in traditional DEE or iMinDEE,28 RCs

are prunable, enumerable states of a residue. Specifically,

consider a residue i with s sidechain dihedrals that is

affected by c continuous perturbations and d discrete

perturbations. Then each RC of i may be represented as

a (2s 1 2c 1 d 1 1)-tuple whose elements are (1) a

maximum and minimum value for each sidechain dihe-

dral angle (following minDEE, we have implemented this

as the modal dihedral for the rotamer � 98), (2) a maxi-

mum and minimum parameter value for each continu-

ous perturbation, (3) a single parameter value for each

discrete perturbation, and (4) an amino acid type. For a

residue with a particular amino acid type whose confor-

mation is described by a set of sidechain dihedral angles

and perturbation parameter values, we say that the resi-

due is in a given RC when its amino acid type and dis-

crete perturbation parameters match those of the RC and

its sidechain dihedrals and continuous perturbation pa-

rameters each fall between the minimum and maximum

values for the RC. Let us use the notation ir for an RC

affecting residue i, by analogy to the notation for

rotamers.38

Like a rotamer in minDEE16,28 an RC represents a set

of closely related conformations. The sets of conforma-

tions are meant to be small enough that the GMEC can

be found by local minimization once an RC has been

assigned to each residue (Fig. 6). In general, RCs are

handled analogously to rotamers in minDEE but can

account for backbone as well as sidechain flexibility.

An important property of perturbations is that if a

perturbation is applied to a protein, the perturbation

must have the same parameter value for all affected resi-
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dues. Thus, if a perturbation p affects residue i and j, and

two RCs ir and js have different parameter value intervals

for p, then the pairwise energy of ir and js can be set to 1,

and the pair should always be pruned. Such a pair is called

parametrically incompatible (Fig. 7). For example, if a shear

perturbation (Types of Perturbations section) in a protein

moves both residues 60 and 61, there can be no conforma-

tion in which residue 60 is in an RC with shear parameter

3–58 but residue 61 is in an unsheared RC. RCs at different

residues with different but overlapping parameter value

intervals for the same perturbation are not allowed, but

this restriction does not limit the conformational space

available to DEEPer; it only limits the choice of RCs used

to represent this conformational space.

Pairs of RCs that are not parametrically incompatible

will be referred to as parametrically compatible.

Having defined the set of RCs for each residue posi-

tion and pruned parametrically incompatible pairs, we

are ready to search for the GMEC or low-energy ensem-

ble, starting with the same minimization-aware pruning

methods as iMinDEE,28 which can be applied without

modification if parametrically incompatible pairs are

assigned an infinite pairwise energy. This is possible

because the derivation of iMinDEE28 does not assume

anything about the geometry of the flexibility. It only

assumes that lower bounds for single-rotamer and pair-

wise interaction energies are available and that there is a

method to minimize conformations once rotamers have

been assigned. Thus, the iMinDEE algorithm can be

applied to RCs with continuous sidechain and backbone

flexibility just as it can be applied to rotamers with only

sidechain flexibility (see Fig. 6). Pruning is followed by

A* search and enumeration of conformations; as in

minDEE16 and iMinDEE,28 the A* search outputs unmi-

Figure 6
iMinDEE can be viewed as a global minimization algorithm over many degrees of freedom (DOFs) that searches a set of energy wells. (a, b) RCs

represent likely locations for energy wells of particular residues. The notation ir is used to represent the rth RC of residue i. (c) This leads to an n-

dimensional lattice for the possible energy well locations for n residues. (d) We prune RCs and tuples of RCs using iMinDEE. Then A* is used to

identify the energy wells with the lowest lower bounds, and local minimization is used to search these wells for the GMEC. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7
Parametric incompatibility of RCs. Suppose residue i and j are affected

by the same backrub. RCs it and js are parametrically compatible because

there exists an overall conformation of the protein in which residue i is

in it and residue j is in js. Similarly, iu and js are parametrically

compatible. But ir and js are parametrically incompatible because there is

no overall conformation of the protein in which residue i is in ir and

residue j is in js. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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nimized conformations in order of lower-bound mini-

mized energy, and local minimization is used to identify

the GMEC or the desired ensemble. These steps are also

part of the iMinDEE protocol.28

The conformation of the protein is always uniquely

defined by the sequence and the values of all perturbation

parameters and sidechain dihedrals. This conformation is

constructed from the original, wild-type conformation by

performing any necessary mutations, rotating sidechains to

obtain the correct dihedrals, and then applying all perturba-

tions with the specified parameters. When there are overlap-

ping perturbations, the precise geometry of the RC will typi-

cally depend on the order in which the perturbations are

applied, so DEEPer must assign an ordering to all the per-

turbations before beginning calculations. This ordering can

be specified by the user, but a default ordering is provided

by the automatic perturbation selector (Types of Perturba-

tions section). If the initial conformational state to which a

perturbation b is applied depends on the state of a previ-

ously applied perturbation a, then any residue affected by b

is also considered to be affected by a for purposes of defin-

ing RCs and minimization, since a affects the final per-

turbed conformations of that residue. It is useful to choose

an ordering that reduces the number of residues affected by

each perturbation and thus the number of RCs. Measures to

accomplish this include performing small perturbations af-

ter larger ones and applying perturbations in a minimal

number of ‘‘layers,’’ where a layer is a set of nonoverlapping

perturbations applied consecutively.

Like iMinDEE, DEEPer requires minimization of pair-

wise energies to compute lower-bound energies as well as

minimization of the total energy of the protein to obtain

final minimized conformations. DEEPer minimizes pair-

wise energies with respect to all continuous perturbation

parameters affecting either of the residues in the pair, in

addition to the residues’ sidechain dihedrals. The total

energy is minimized with respect to all continuous pertur-

bation parameters and sidechain dihedrals. To change the

parameter value for a perturbation p, p can be undone

and then reapplied with the correct parameter. To ensure

that perturbations are all applied in the correct order, per-

turbations that were applied after p may have to be

undone before p is undone and then reapplied after p is

reapplied. As a result, it is best to apply continuous pertur-

bations after discrete ones, so that discrete perturbations

do not need to be re-applied during minimization.

At the discretion of the user, the space of RCs in DEEPer

can be augmented by introducing wild-type ‘‘rotamers’’ for

each residue. These are rotamers generated by taking the

sidechain conformation from the starting structure

(including the original bond lengths and angles) and then

allowing � 98 minimization of sidechain dihedrals. Wild-

type rotamers are added to the calculation along with the

generic rotamers from the rotamer library (which, in the Pe-

nultimate rotamer library13 we use, correspond to clusters of

dihedral angles from high-resolution structures in the PDB).

Indirect pruning

By construction, DEEPer allows searching a larger con-

formational space than any previous provable protein

design algorithm can search. This additional flexibility

can lead to additional computational complexity. In this

section, we show that a new algorithm, indirect pruning,

can be used to alleviate this complexity. To explain this

new algorithm, we first introduce the concept of the

pruning zone and then provide additional machinery that

will be needed to describe the algorithm formally. Next,

we provide theorems establishing the correctness of indi-

rect pruning and an analysis of its computational com-

plexity. Finally, we provide a simple ‘‘toy’’ example of

indirect pruning to illustrate the functioning of the algo-

rithm.

In principle, DEEPer could be implemented using only

previous minimization-aware DEE pruning algorithms,

such as iMinDEE28 and minBounds.59 For these algo-

rithms, RCs are used instead of rotamers, and pairwise

energies of parametrically incompatible RC pairs are set

to 1. There is some additional cost due simply to the

larger number of RCs than rotamers. However, there is

also a source of inefficiency in the DEE pruning step by

previous algorithms that arises specifically due to the

DEEPer perturbation model [Fig. 8(a,b)]. Let ir and it be

any two RCs that include a different parameter value

interval for some perturbation p, where p affects both

residue i and some other residue k. In such a case, ir is

parametrically incompatible with some RC of k that is

parametrically compatible with it. But it is parametrically in-

compatible with some other RC of k that is parametrically

compatible with ir. Consequently, the left-hand side of the

iMinDEE pruning condition [Eq. (1)] will necessarily

be -1, since the term in the sum for j 5 k will be -1
regardless of whether we are trying to prune ir using it or

the other way around. This lack of pruning would require

every combination of parameter values for different pertur-

bations to be enumerated in the A* step. The number of

such combinations can grow exponentially with the number

of perturbations, quickly leading to intractable calculations.

To avoid this problem, we derive a new pruning algo-

rithm, indirect pruning, that can prune in such cases.

This method is designed to take advantage of already-

pruned pairs of RCs. These can be parametrically incom-

patible pairs, pairs with steric clashes, pairs that have

been pruned by other pruning algorithms, and pairs

pruned by previous iterations of indirect pruning. Indi-

rect pruning is intended for use in addition to previous

techniques, rather than as a replacement for them, in

order to obtain optimal pruning.

Pruning zones

We will now introduce the concept of a pruning zone,

a key novel feature of our method.
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We designate a set of residues as the pruning zone,

denoted as Z. In principle, Z may be chosen to be any

set of residues in the system (good choices of Z are dis-

cussed below). We then attempt to prune RCs for each

residue in Z. In DEE pruning, a ‘‘candidate’’ rotamer is

said to be pruned using a ‘‘competitor’’ rotamer, with

‘‘witness’’ rotamers at other residues considered in the

calculation.14 Suppose we wish to prune the candidate

RC ir using the competitor RC it. Because some RCs else-

where in the pruning zone may be parametrically incom-

patible with it but not ir (or vice versa), we may not be

able to find witness RCs at those residues. As a result, it

is not feasible to prune ir by considering only the energy

terms involving residue i, as DEE does.

Instead, we try to prune all conformations of Z that

contain ir (Fig. 8). Since we represent each conformation

of Z as a tuple of RCs, the pruning condition for tuples

of RCs [Eq. (4) below] could be used here; this pruning

condition considers the energy terms involving all

residues in Z. However, pruning each tuple individually

would be very time consuming, because the number of

conformations of Z grows exponentially with respect to

z 5 |Z|.

To avoid this problem, we use bounds to ‘‘indirectly’’

prune all the tuples containing ir at once. First, we bound

the energy differences that we need to prune conforma-

tions of Z containing ir. Then, we try to identify a con-

formation of Z that includes it and can prune all confor-

mations of Z that include ir. We still consider the energy

terms involving all residues in Z, and we break up the

pruning condition into terms of the form in Eq. (2) to

allow efficient computation of the bounds. This leads to

Figure 8
Parametric incompatibility impedes DEE pruning but not indirect pruning. (a) Normally, DEE is able to compare conformations containing a

candidate RC ir to those containing a competitor RC it and prune ir if the conformations containing ir are always higher in energy. We can

determine this by comparing all energy terms involving residue i: its internal energy plus its interaction energies with all other residues. Solid lines

denote this summed energy for ir (red) and for it (purple). (b) If ir and it have different parameter intervals for a perturbation, then the

conformations of other residues affected by the perturbation cannot be directly compared by the DEE criterion. Thus, pruning using this criterion

is impossible, regardless of the energetics of these RCs. (c) This problem is alleviated if we compare all energy terms involving a multi-residue

pruning zone rather than just the single residue position i. Indirect pruning works by comparing the sets of all conformations of the pruning zone

containing ir (red) to all conformations of the pruning zone containing it (purple). But even for a given set of conformations for all residues
outside the pruning zone, each of these sets of conformations will have a range of energies (shown as colored regions). We use bounds (red and

blue lines) to avoid the expensive process of considering each conformation of the pruning zone. We seek a lower bound on the energy difference

between the best conformation involving it (the blue line is an upper bound on this conformation’s energy) and the best conformation involving ir
(the red line is a lower bound on this conformation’s energy, so the difference between the red and blue lines represents a lower bound on the

energy difference). Dashed lines indicate the energy gap between conformational states involving ir and those involving it. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the maximization of a minimum in Algorithm 1 below:

we perform a minimization in step 2 to bound the energy

associated with Z when residue i is in the RC ir, and this

creates the overall conformation u of Z that will be

‘‘hardest’’ to prune. Then we find the overall conformation

v, consisting of it and its companions, that will at least

approximately maximize the energy difference q (see Algo-

rithm 1) and thus make pruning most feasible. We use a

greedy maximization strategy that is not provably optimal

to avoid an exponential running time; however, pruning is

still provably correct. Like conformational-splitting DEE,42

this algorithm effectively partitions the search space of

witness RCs at residues other than that of the RC we are

trying to prune. However, by implicitly constructing con-

formations of the entire pruning zone, it can more com-

prehensively exclude infeasible conformations from the

pruning and thus prune more powerfully than conforma-

tional splitting, which only splits conformations based on

the RC choice at one or two residue positions.

Unlike previous algorithms, indirect pruning can

remove pruned competitor-witness as well as candidate-

witness pairs from analysis. Indirect pruning has been

implemented first using all flexible residues as the prun-

ing zone, followed by additional pruning zones as

described in the Supporting Information (section B.2).

Notation

Some of the notation presented here is shared with

previous work on DEE-based algorithms, such as Ref. 16,

but some new notation is also required for the explana-

tion of indirect pruning. We define E§(ir) to be the min-

imum intra-residue energy that the residue can have

while in the RC ir, and given some other RC js (j=i), we

define E§(ir , js) as the minimum pairwise interaction

energy that residues i and j can have while i is in ir and j

is in js. These quantities will be used to calculate lower

bounds for conformational energies. Following normal

usage, we call an RC or a tuple of RCs at different resi-

dues pruned if it has been determined that its residue(s)

cannot all be in the specified RC(s) in the GMEC or in

any conformation of the desired ensemble. Next, we pro-

vide a notation for tuples of RCs. Suppose we have an

m-tuple r of RCs, where each RC ir [ r applies to a dif-

ferent residue i; we then define Mr to be the set of resi-

dues to which the RCs in r apply. For i [ Mr , let ir
denote the RC in r corresponding to i. In other words,

we will use the notation ir to refer to elements in a tuple,

indexed by residue. Also, let N denote the set of residues

that are not in the pruning zone.

Now, we provide a notation for the RCs that we are

searching over. Let Rj be the set of unpruned RCs at resi-

due j. For each pair (i, j) of residues, we can construct a

set Rj(ir) ( Rj containing all RCs of j that may be found

in a conformation that also contains ir (Fig. 9). To do

this, for each i=j, we stipulate that an RC js [ Rj is in

Rj(ir) if and only if js has not been pruned and the pair

(ir, js) has not been pruned. In other words, Rj(ir) con-

sists of all the RCs at position j that are compatible with

ir. If the indirect pruning algorithm is to be applied to a

given pruning zone multiples times, Rj(ir) needs to be

recomputed each time. This is analogous to the way

newly pruned rotamers are excluded from analysis at

each iteration in other forms of DEE. Since ir is compati-

ble with itself, we also define Ri(ir) 5 {ir}.

Similarly, let us define Rj(r) to specify the set of RCs

of residue j that are compatible with all RCs in r.

Unpruned RCs at position j can be excluded from Rj (r)

based either on pruned pairs or larger tuples. To make

this rigorous, for j =2Mr , js [ Rj is in Rj (r) if and only if

no tuple of RCs g specifying the conformation of

W | {j} has been pruned, where W ( Mr , jg 5 js, and

hg 5 hr for each residue h [ W. If no tuples larger than

pairs have been pruned, then this condition can be

Figure 9
The Rj(ir) notation. Suppose residues i and j are affected by the same backrub. Then Rj(ir) (blue voxels on the right) can consist only of RCs with

the same parameter range for this backrub as ir. RCs can also be excluded because of pruned pairs: even though js has the same parameter range as
ir, js =2 Rj(ir), because the pair (ir,js) has been pruned (either by a steric check, a previous round of indirect pairs pruning, or another pruning

algorithm). RCs of j that are not in Rj(ir) (those that cannot be found simultaneously with ir in a conformation of the protein) are shown in green.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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simplified: js [ Rj is in Rj(r) if and only if no pair (ir , js)

has been pruned, for i [ Mr.

RCs that are part of r are compatible with r, so for j [
Mr , Rj(r) 5 {jr}.

Formal description of algorithm

Indirect pruning of individual RCs proceeds as follows.

Algorithm 1. Pruning individual RCs.

1. For each residue i in Z, and for each ordered pair of

RCs (ir , it) at i with ir=it, calculate K(ir,it), where

K ðha; hbÞ ¼ E�ðhaÞ � E�ðhbÞ
þ

X
h02Z ;h0<h

�
min

h0
a0 2Rh0 ðhaÞ

E�ðha; h0a0 Þ � max
h0
b0 2Rh0 ðhbÞ

E�ðhb; h0b0 Þ
�

þ
X
j2N

min
js2Rj

�
E�ðha; jsÞ � E�ðhb; jsÞ

�
: ð2Þ

2. For each pair (ir , it):

(a) Create a variable q and set q 5 0.

(b) For each h [ Z, iterating in increasing order of h,

find the RC hv that maximizes min
ha2Rhðir Þ

Kðha; hvÞ

subject to the conditions hv [ Rh(it) and hv [
Rh(jv) for each j [ Z with j < h ; add this maximum

value to q.

(c) Prune ir if and only if q > Ew 1 I, where Ew is the

desired energy window and I is the pruning interval

(see Introduction).

This pruning condition, unlike the iMinDEE pruning
condition [Eq. (1)], is broken down into the RC pair terms
K(ha,hb) [see Eq. (2)] first rather than into pairwise and sin-
gle-residue terms, to facilitate the algorithm. Eq. (2) in turn
is broken down into single-residue terms, pairwise terms
within the pruning zone, and finally pairwise terms between
residues inside and outside the pruning zone.

The indirect pruning strategy can also be applied to
pairwise or higher-order pruning (pruning of pairs or larger
tuples of RCs). Let r be a tuple of RCs. We will try to prune
tuples of residues in the pruning zone, that is, try to prune
some tuples r such that Mr ( Z. To prune tuples, we must
first precompute K(ir , it) for each ordered pair of RCs (ir , it)
with ir=it at each i in Z. This is the same precomputation
as is required for pruning single RCs (Algorithm 1). Our
implementation prunes single RCs before pairs and reuses
the precomputed K(ir , it) values for the pairs pruning. Then,
to attempt pruning of the tuple r using the competitor tuple
t, where Mr 5 Mt (so corresponding elements of r and t are
at the same residue), we apply the following algorithm:

Algorithm 2. Pruning a tuple of RCs.

1. Set q5 0.
2. For each h [ Z 2 Mr, iterating in increasing order of h, find
the RC hv that maximizes min

ha2RhðrÞ
Kðha; hvÞ subject to the

conditions hv [ Rh(r) and hv [ Rh(jv) for each j [ Z with

j < h ; add this maximum value to q.

3. Prune r if and only if q 1 K(r,t) > Ew 1 I where

Kðr; tÞ ¼
X
i2Mr

�
E�ðirÞ � E�ðitÞ

þ
X

h02Mr;h0<i

ðE�ðir; h0rÞ � E�ðit; h0tÞÞ
�

þ
X

h02Z�Mr

�
min

h0
a0 2Rh0 ðrÞ

X
i2Mr

ðv
h0<i

E�ðir; h0a0 ÞÞ

� max
h0
b0 2Rh0 ðtÞ

X
i2Mr

ðv
h0<i

E�ðit; h0b0 ÞÞ
�

þ
X
j2N

min
js2Rj

X
i2Mr

ðE�ðir; jsÞ � E�ðit; jsÞÞ: ð3Þ

The reader will find a proof of the following lemma and

theorem, showing the correctness of Algorithm 1, in sec-

tion A.1 of the Supporting Information.

Lemma 1. Let u be a z-tuple of RCs with Z 5 Mu. If

there exists a z-tuple v of RCs specifying a conformation of

Z such that

X
h2Z

E�ðhuÞ�E�ðhvÞþ
X

h02Z ;h0<h

ðE�ðhu; h0uÞ�E�ðhv; h0vÞÞ
 !

þ
X
j2N

min
js2Rj

X
h2Z

ðE�ðhu; jsÞ � E�ðhv; jsÞÞ > Ew þ I ; ð4Þ

then u can be pruned, meaning that Z is not found in the

conformation u in any overall protein conformation whose

energy is within Ew of the GMEC.

Theorem 1. If Algorithm 1 prunes an RC ir, then no

protein conformation whose energy is within Ew of the

GMEC will contain ir.

The correctness of Algorithm 2 is shown by the follow-

ing theorem, proved in section A.2 of the Supporting In-

formation:

Theorem 2. If Algorithm 2 prunes a tuple of RCs r,

then no protein conformation whose energy is within Ew of

the GMEC will contain r.

Complexity

Indirect pruning, like regular DEE, runs in polynomial

time. We can characterize the complexity in terms of n,

the number of residues in the system; z, the size of the

pruning zone, with z � n ; and r, the maximum number

of RCs at any residue in the pruning zone:

Lemma 2. Indirect pruning of single RCs for a pruning

zone Z runs in O(z2r4 1 znr3 1 z3r3) time.
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Lemma 3. Indirect pruning of m-tuples of RCs for a

pruning zone Z runs in O(zmr2m11(n 1 z2 1 zr)) time.

These results are derived in the Supporting Informa-

tion (section A.3). Note that pruning all m-tuples takes

exponential time with respect to m using any form of

DEE simply because the number of possible m-tuples to

prune grows exponentially with respect to m. The time

cost to prune a single m-tuple is polynomial with indi-

rect pruning or any previous DEE-based algorithm.

Unlike the original DEE algorithm, indirect pruning has

nontrivial space complexity, because it must calculate the

RC-pair terms K(ir , it) for each residue pair (ir , it). How-

ever, because there are O(zr2) such pairs, the memory

cost is just O(zr2), which is negligible compared to A* or

even to the cost of storing a boolean for each tuple indi-

cating whether it is pruned, which is O(nmrm).

Because it can prune RCs using RCs in different back-

bone states, indirect pruning could also be useful in mul-

tistate protein design, which designs sequences that prefer

one backbone state over another.60

Toy example of indirect pruning

The indirect pruning condition can be illustrated using

the toy example whose energies are listed in Table III. We

are using the pruning zone Z 5 {i , j} and trying to prune

ir using it. We will not consider any continuous flexibility,

so we can just consider well-defined energies E instead of

energy lower-bounds E§ and let I 5 0. Suppose residues i

and j are affected by a discrete perturbation, which may

have parameter value either 0 or 1. The RCs ir and js have

parameter value 0 for this perturbation, while it and js0

have parameter value 1; thus Rj(ir) 5 {js}, Rj(it) 5 {js0},

Ri(js) 5 {ir}, and Ri(js0) 5 {it}. All these RCs have alanine

as their amino acid type. Since alanine has no sidechain

dihedrals, none of the RCs include bounds for sidechain

dihedrals. Furthermore, suppose residue k is not affected

by the perturbation but has two rotamers, treated as rigid

here: the m rotamer of valine and the t0 rotamer of aspar-

tate (the other rotamers of valine and aspartate having

been pruned already). The RCs ku and ku0 correspond to

the two rotamers of k. They have the amino acid types

and dihedral angles of their corresponding rotamers and

no perturbation parameters.

We first need to calculate K(ir , it) 5 E(ir) - E(it) 1

E(ir , ku0) - E(it , ku0) 5 2, and also we need K(js , js0) 5

E(js) -E(js0) 1 E(ir , js) -E(it , js0) 1 E(js , ku0) -E(js0 , ku0)

5 21. When we apply our pruning condition, K(ir , it) 1

K(js , js0) > Ew, we are pruning all conformations of Z

that include ir (in this case, there is just one such possi-

ble conformation of Z, defined by ir and js). Therefore,

we prune if 2–1 5 1 > Ew. Since we are looking for all

conformations within energy Ew of the GMEC, if we

want only the GMEC, we set Ew 5 0 and thus prune ir.

Tests and validation

BD, iMinDEE, and DEEPer were run using

OSPREY50,61 on 67 test systems to compare their

GMECs, thus investigating the advantages of DEEPer in

sequence design. The PDB codes of the proteins used

were 2ILB (three tests), 2BGX (two tests), 1EJG, 1FUS,

1IFC, 1LKK, 1PLC, 1POA, 1RRO, 1WHI, 2GNR, 2RHE,

2TRX, 1L6W, 1L7A, 1L7L, 1L7M, 1L8R, 1L9L, 1L9X,

2OXC, 2OXU, 2OYN, 2OZF, 2OZT, 2P02, 2P0W, 2PK8,

2PL1, 2PLT, 2PSP, 2PTH, 2RMC, 2SGA, 2WEA, 2YGS,

3CAO, 1AHO, 1C75, 1CC8, 1F94, 1FK5, 1I27, 1IQZ,

1JHG, 1M1Q, 1MJ4, 1OAI, 1OK0, 1PSR, 1R6J, 1TUK,

1U07, 1VBW, 1VFY, 1WXC, 1XMK, 1Y6X, 1ZZK, 2AIB,

2BT9, 2CC6, 2CG7, and 2CS7. Structures with hydrogens

added were taken from the Richardson lab’s Top4400

database62 or provided by Pablo Gainza and Kyle Rob-

erts (personal communication). All flexible residues were

in chain A except those for 1WXC, which were in chain

B. Wild-type rotamers were not used in these tests, to

provide a fair comparison of DEEPer to previous meth-

ods. Also, the tests were run using the automatic pertur-

bation selection mechanism (Types of Perturbations sec-

tion). The set of flexible residue positions and the set of

allowed mutations were selected manually for each system,

with a variety of secondary structures and allowed muta-

tions (including some cases with no mutations permitted).

Backrub and shear parameters y were limited to the interval

22.58 � y � 2.58, and 5–11 flexible residues were chosen

per system, except in a single run without continuous flexi-

bility on a crystal structure of the E. coli amidase AmiD

(PDB code 2BGX63) where shear and backrub parameters

of 0 or � 58 were allowed and 19 flexible residues were cho-

sen. The discrete conformational space of this run allowed

visualization of the backbone conformational search space

[Fig. 14(a)]. Since this run was performed without continu-

ous flexibility, rigid-rotamer DEE was performed in lieu of

iMinDEE and BD and compared to DEEPer.

Additional tests were performed without sequence

changes to test the ability of DEEPer to model larger

backbone changes, to recover experimentally observed

structures, and to model ensembles. When crystallo-

graphic alternates were used as a source of information

on backbone conformational changes, wild-type rotamers

for the starting alternate only were included in these

Table III
Pairwise Energies for RCs in the Toy Example

RC
Perturbation

parameter value Intra-energy

Pairwise energies

js js0 ku ku0

ir 0 2 22 1 0 5
it 1 0 1 23 25 5
js 0 22 20 3
js0 1 0 2 3
ku n/a 1
ku0 n/a 1

Pruning of RC ir using it will be attempted, with pruning zone Z 5 {i, j}.
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runs; this inclusion simulates the availability of wild-type

rotamers for the starting conformation when DEEPer is

applied to a design problem.

RESULTS AND DISCUSSION

In this section, we present computational tests of

DEEPer. The tests show that, given a biophysical model,

the additional molecular flexibility in DEEPer leads to

more accurate treatment of protein conformations and

sequences. These results justify the use of DEEPer in pro-

tein design calculations.

Tests of DEEPer using the automatic perturbation

selection mechanism on 64 proteins consistently identi-

fied lower-energy structures than iMinDEE and BD.

Lower-energy structures are more realistic assuming the

correctness of the energy function in ranking conforma-

tions. (OSPREY’s energy function7,10 is based on

AMBER64,65 and EEF1.66) Additional tests on a high-re-

solution structure of the serine protease sphericase from

Lysinibacillus sphaericus (PDB code 2IXT67) and on a

medium-resolution structure of human ubiquitin (PDB

code 1UBQ68) demonstrate that DEEPer captures bio-

physically reasonable backbone motions and couplings of

sidechain and backbone motions without introducing

unrealistic conformations.

Comparisons to previous algorithms with
less flexibility

67 sequence-design tests on 64 different proteins, as

described in the Tests and Validation section, were run to

compare the GMECs found by iMinDEE and DEEPer

[Figs 10, 11, 12, and 14(a)]. By construction, DEEPer is

guaranteed to yield either the same or lower GMEC

energy than iMinDEE. Indeed, the GMECs calculated by

DEEPer were lower than those calculated by iMinDEE by

an average of 1.9 kcal/mol, ranging from 0 to 14.1 kcal/

mol [Fig. 10(a)]. 67% of these energy differences exceed

Figure 10
DEEPer GMEC designs compared to designs by previous algorithms with less flexibility on 67 test systems. (a) Decrease in energy from the

iMinDEE GMEC to the DEEPer GMEC. (b) Decrease in energy from the BD GMEC to the DEEPer GMEC. Two systems are not shown because

BD pruned all rotamers, indicating a steric clash for all rigid rotamers that was resolved by continuous minimization in iMinDEE and DEEPer.

These systems are Chinese cobra phospholipase A2 (PDB code 1POA) and Pyrococcus furiosus hypothetical protein PF0899 (PDB code 2PK8). One

system, the a subunit of human S-adenosylmethionine synthetase 2 (PDB code 2P02) had a higher DEEPer than BD GMEC energy. A dotted red

line is shown in both (a) and (b) at the thermal energy at room temperature, 0.592 kcal/mol, as a rough measure of the significance of energy

differences. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 11
DEEPer GMEC designs compared to designs by previous algorithms with less flexibility on 67 test systems, continued. (a) Decrease in energy from

the BD to the DEEPer GMEC versus decrease in energy from the iMinDEE to the DEEPer GMEC. (b) Numbers of test systems with given numbers

of sidechain rotamer changes between the iMinDEE and DEEPer GMECs. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 12
Comparisons of DEEPer GMECs (blue) to iMinDEE GMECs (red) and BD GMECs (green) for four systems. (a) Porcine pancreatic spasmolytic

polypeptide (PDB code 2PSP), residues 52–58. Residue 54 is a tyrosine in the DEEPer GMEC but a lysine in the iMinDEE and BD GMECs. A

steric clash (pink spikes, generated using Probe69) persists after fixed-backbone, flexible-sidechain energy minimization of the rotamers of the

DEEPer GMEC (magenta), making a tyrosine at residue 54 infeasible without backbone flexibility. (b-c) Bacillus subtilis cephalosporin D deacetylase

(PDB code 1L7A), residues 100–107. The DEEPer, iMinDEE, and BD GMECs all adopt different histidine rotamers at residue 100 (b); the DEEPer

rotamer is the only one in the crystal structure. Residue 105 is a tryptophan in the DEEPer GMEC but an alanine in the iMinDEE and BD GMECs

(c); a steric clash persists after flexible-backbone, rigid-rotamer energy minimization of the rotamers of the DEEPer GMEC (magenta), making a

tryptophan at residue 105 infeasible without continuous sidechain flexibility. (d) The protease penicillopepsin from Penicillium janthinellum (PDB

code 2WEA), residues 300–305. The iMinDEE and BD GMEC backbones are very similar; the DEEPer GMEC adopts a different backbone and

achieves a lower energy. (e) The Zb domain of the human RNA editing enzyme ADAR1 (PDB code 1XMK), residues 306–311. The iMinDEE and

DEEPer GMECs are virtually identical; the BD GMEC adopts a different backbone but still has a a higher energy due to a lack of sidechain

flexibility.
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the thermal energy at room temperature (0.592 kcal/mol,

calculated as the universal gas constant times a room

temperature of 298 K), which is a rough measure for

functional significance. GMECs were also computed

using BD,26 a provable algorithm with more limited

backbone flexibility and without continuous sidechain

minimization. DEEPer yielded lower GMEC energies in

every case but one. In this single case, for the a subunit

of human S-adenosylmethionine synthetase 2 (PDB code

2P02), the BD GMEC was only 0.4 kcal/mol lower in

energy than the iMinDEE and DEEPer GMECs, which

were virtually identical to each other; subtle backbone

conformational changes in BD led to the slight energetic

advantage of the BD structure, outweighing some larger

differences in sidechain dihedrals (which did not include

any rotamer changes). Conversely, the GMECs calculated

by DEEPer were lower than those calculated by BD by an

average of 6.3 kcal/mol, with the difference ranging up

up to 68.4 kcal/mol and exceeding the thermal energy at

room temperature in 94% of runs [Fig. 10(b)].

The changes in GMEC energy from iMinDEE to

DEEPer and from BD to DEEPer were very weakly corre-

lated [R2 50.37, where R2 is the coefficient of determina-

tion; see Fig. 11(a)]. This indicates that modeling back-

bone flexibility is not an effective substitute for modeling

continuous sidechain flexibility or vice versa. Part of this

weak correlation is explained by a few systems in which

DEEPer provided a very large energetic advantage over

both iMinDEE and BD, facilitated by a rotamer change

or mutation that required both continuous sidechain and

backbone flexibility to accommodate. For example, for

porcine pancreatic spasmolytic polypeptide (PDB code

2PSP), BD and iMinDEE both had a lysine at position

54 while DEEPer had a tyrosine. A steric clash blocked

BD and iMinDEE from having a tyrosine at this position

[Fig. 12(a)]. This was associated with the largest GMEC

energy difference both between DEEPer and iMinDEE

and between DEEPer and BD. For Bacillus subtilis cepha-

losporin D deacetylase (PDB code 1L7A), DEEPer, iMin-

DEE, and BD chose different rotamers for histidine 100

[Fig. 12(b)], although DEEPer identified the native

rotamer, likely due to combined backbone and sidechain

minimization at adjacent residues asparagine 101 and ly-

sine 104. In the same run, DEEPer chose the wild-type

tryptophan at nearby residue 105 instead of the alanine

chosen by iMinDEE and BD; steric clashes precluded a

tryptophan with either BD backbone minimization alone

[Fig. 12(c)] or iMinDEE sidechain minimization alone.

Because of these combined differences, this region was

associated with one of the largest DEEPer-iMinDEE

energy differences (9.8 kcal/mol), although the DEEPer-

BD energy difference was below average (3.2 kcal/mol).

Even the different forms of backbone flexibility mod-

eled by BD and DEEPer were somewhat complementary.

In some tests, for example for the protease penicillopep-

sin from Penicillium janthinellum [PDB code 2WEA; Fig.

12(d)], the BD structure stayed very near the fixed-back-

bone iMinDEE structure, and DEEPer modeled more

backbone motion. In other cases, for example for the Zb

domain of the human RNA editing enzyme ADAR1

[PDB code 1XMK; Fig. 12(e)], the reverse was true: the

DEEPer and iMinDEE structures were virtually identical

while BD modeled more backbone motion. However, in

both cases, continuous sidechain flexibility allowed

DEEPer to identify lower-energy sidechain conformations

made accessible by its backbone conformational search.

For example, for penicillopepsin DEEPer returned a

GMEC energy 17.7 kcal/mol lower than BD, and for Zb

the DEEPer and iMinDEE GMEC energies were both

16.5 kcal/mol lower than the BD GMEC energy.

Notably, the perturbations’ effects on the sidechains far

exceeded their effects on the backbone; the latter ranged

from 0 to 0.39 Å all-atom backbone RMSD with an aver-

age of 0.06 Å. This is partly due to the ‘‘lever effect,’’ that

is, the greater displacement of sidechain atoms than of

backbone atoms during a perturbation because the side-

chain atoms are kinematically farther from the axes of

the rotations involved in the perturbation (Fig. 13).

Thus, despite the small displacements of the backbone

atoms, the effects of shears and backrubs on atoms at the

end of sidechains can be substantial. For example, a 2.58
backrub centered at an all-trans lysine residue in an ideal

b sheet with no other perturbations causes a backbone

RMSD for the three affected residues relative to the origi-

nal structure of just 0.05 Å, and the lysine’s Ca atom

moves by just 0.09 Å, but the lysine’s terminal Nf atom

moves by 0.35 Å. Because they induce only small back-

bone changes, shears and backrubs in the 22.58 to 2.58
parameter range are expected to be biophysically feasible

in a wide range of conformations. The backbone motions

in DEEPer also induced rotamer changes: one or more

rotamer changes were observed in 46% of tests, and up to

four rotamer changes per test were observed [Fig. 11(b)].

Energy differences between GMECs found by different

algorithms directly measure the effectiveness of the algo-

Figure 13
The lever effect for a backrub: the sidechain atoms move the most because
they are farthest from the axis of rotation. A 58 backrub is shown. The

view on the left looks down the axis of rotation, while the view on the

right shows the axis of rotation as a black line. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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rithms for their desired function, which is to explore the

sequence and conformational space available to a protein

and find the lowest-energy sequence and conformation

available. Inaccuracy in identifying low-energy conforma-

tions and sequences can come from either inaccuracy in

the energy function or inaccurate identification of the

lowest-energy conformation(s) and sequence(s) given the

energy function. DEEPer is intended to reduce inaccuracy

of the latter type, and we performed energy comparison

tests to separate this task from the also important task of

improving energy function accuracy. Because of its prov-

ability and its high degree of flexibility, DEEPer is

uniquely useful for evaluating and improving energy

functions and other modeling assumptions. Errors in the

model–that is, deviations of modeling assumptions from

reality–can be identified by running DEEPer and examin-

ing deviations of the output from observed structures.

Such tests would be much less effective if run using a

nonprovable algorithm, because errors in the output

could be due either to errors in the model or to devia-

tion of the results of the algorithm from the correct an-

swer for the input model. Also, since real proteins exhibit

continuous sidechain and backbone flexibility, the most

accurate models must have both of these as well, and

thus testing these models requires an algorithm with con-

tinuous sidechain and backbone flexibility. DEEPer’s

provable search of a conformational space with both con-

tinuous sidechain and backbone flexibility is thus

uniquely suited for testing modeling assumptions.

Both BD and iMinDEE provably find the lowest-

energy structure in their chosen conformational spaces,

but the significantly lower energies identified with

DEEPer indicate that it finds additional significant con-

formations that involve continuous sidechain and back-

bone flexibility. Thus, DEEPer is a useful step toward

finding better conformations and sequences given an

energy function. Together with advances in energy func-

tions, which it will hopefully facilitate, it is a useful step

toward finding conformations and sequences more in

line with reality.

Tests of larger backbone conformational
changes

To further demonstrate the utility of DEEPer in mod-

eling realistic conformations, tests were performed to

show that DEEPer can model larger backbone conforma-

tional changes using partial structure switches. The

allowed backbone conformations were crystallographic

alternates in two segments of the structure of sphericase

(2IXT67). In each test, the input structural information

consisted of the backbones of the two crystallographic

alternates as well as the sidechains only of the starting

alternate (to be used as wild-type rotamers). The tests

maintained the wild-type sequence (see Tests and Valida-

tion section).

The first segment was loop residues 36–43, in a fairly

surface-exposed region of the protein with some 310-heli-

cal character. Residues 48 and 66 were also allowed side-

chain flexibility because of their close contacts with the

alternates. Two tests were undertaken. The first test was

run without the automatic perturbation selector, meaning

that the only perturbation available was the partial struc-

ture switch that changes the backbone from the starting

alternate to the other alternate. The algorithm was being

asked to choose a backbone and to pack sidechains onto

it, using the wild-type rotamers with the starting alter-

nate or generic rotamers with either the starting or the

Figure 14
Examples of DEEPer GMEC searches. (a) A sequence-design run on structure 2BGX (AmiD from E. coli). The GMEC backbone moved away from

the starting conformation for residues 126–131. The lack of continuous flexibility in this run allows display of all searched backbone conformations.

(b) A conformational-search run on structure 2IXT (sphericase). From the starting conformation, a partial structure switch allowed the GMEC to

change the backbone to that of a crystallographic alternate conformation for residues 37–42, where its sidechain rotamers also matched. Starting

structure, black/gray; complete searched ensemble, purple; GMEC, pink. Green balls demarcate flexible-backbone regions; sidechains outside these

regions are omitted for visual clarity. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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other alternate. It identified the GMEC as the nonstarting

alternate, including both its backbone and sidechain

rotamers [Fig. 14(b)]. Four of these eight rotamers dif-

fered from the starting rotamers (counting a proline flip).

The second test was run with the automatic perturbation

selector, so more perturbations and RCs were available.

This test identified the GMEC as a modified version of the

nonstarting alternate, perturbed by not only the partial

structure switch between alternates but also a loop closure

adjustment and some continuous backrub minimization.

This GMEC was 3.4 kcal/mol lower in energy than the

GMEC from the first test, thus illustrating the value of

including additional backbone perturbations.

The second segment was residues 264–270, at a surface-

exposed a-helical C-terminus. Two tests were again under-

taken; this time both used the automatic perturbation se-

lector, but the second also allowed up to 2.58 in either

direction of continuous shear and backrub minimization.

Both tests chose the other alternate’s backbone in the

GMEC. However, additional backbone perturbations, this

time in the form of continuous shear and backrub mini-

mization, reduced the energy by only 0.15 kcal/mol. This

is in contrast to the second test on the first segment,

where additional backbone perturbations were instrumen-

tal in finding a lower-energy conformation.

These results show that partial structure switches alone

are sufficient for modeling backbone structure in some

cases, but in other cases additional perturbations are im-

portant for more fully exploring conformational space.

DEEPer is useful for distinguishing between these differ-

ent types of cases. This capability could be very useful in

multistate protein design by revealing small changes in

one of the available backbone states that would make

that state much more favorable for a given sequence.

Tests of ensemble generation

Additional runs were performed to test the ability of

DEEPer to generate biophysically reasonable ensembles of

low-energy conformations given fixed sequences. In residues

157–160 of 2IXT (the above-mentioned sphericase structure),

the crystal structure contains alternate conformations related

approximately by a shear motion. This likely indicates

increased backbone dynamics compared to other parts of the

structure, and indeed the DEEPer ensemble generated using

the native sequence showed more diversity of backbone con-

formations than in tests on other systems, sampling the con-

formational space around and between the alternates [Fig.

15(a)]. By contrast, in residues 238 and 240–243 of spheri-

case modeled with a G242S mutation, the DEEPer backbone

ensemble was fairly concentrated around the starting-alter-

nate backbone [Fig. 15(b)]. However, DEEPer identified one

state in this ensemble significantly different from both alter-

nates, which was generated by a large loop closure adjust-

ment and a subsequent backrub; neither of these perturba-

tions alone yielded a comparably low-energy conformation.

Finally, a test on residues 35–38 of ubiquitin, for which only

one conformation was crystallographically observable,

showed a much more concentrated ensemble [Fig. 15(c)].

These results demonstrate that the combination of different

types of flexibility in DEEPer allows it to effectively explore

ensembles of realistic conformations, including some with

substantial deviation from the starting structure.

Modeling entropy

As noted in the Introduction, ensembles generated by

DEEPer can be used to estimate binding affinity using

the K* algorithm,5,14,16 which compares the partition

Figure 15
DEEPer ensembles are dependent on structural and sequence contexts. (a) The low-energy ensemble of computed models was fairly wide at residues

157–160 of sphericase (structure 2IXT) and spanned the crystallographic alternates. The GMEC was on the fringe of the ensemble. (b) Residues 238

and 240–243 also have alternates in structure 2IXT, but the low-energy ensemble from DEEPer for the G242S mutant, including the GMEC, was

very tight around alternate A. One low-energy model made a significant excursion via a > 908 peptide flip, executed by a loop closure adjustment

and backrubs. (c) Residues 35–38 in structure 1UBQ (ubiquitin) have a single well-ordered conformation. Correspondingly, the low-energy

ensemble from DEEPer is very compact: the biggest departure is a single proline flip perturbation. Starting structure, black/gray; low-energy

ensemble, blue; GMEC, pink. Green balls demarcate flexible-backbone regions; sidechains outside these regions are omitted for visual clarity. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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functions of bound and unbound proteins and ligands.

The partition function of a system is defined in K*’s

model as q
C
¼
P
c2C

expð� Ec
RT
Þ, where C is all enumerated

conformations (tuples of RCs at all flexible residues), Ec
is the minimized conformational energy for conforma-
tion c [ C, R is the universal gas constant, and T is the
temperature. The association constant is then approxi-

mated as K* ¼ qPL

qPqL
, where qP, qL , and qPL are the parti-

tion functions of the unbound protein, the unbound

ligand, and the protein:ligand complex, respectively.5,14,16

K* is a provably-good approximation algorithm: it guaran-

tees that the computed binding constant will be within a

fraction e of the theoretical binding constant defined by

the model.14,16 The value e is specified by the user, to

bound the desired accuracy of the calculation.

The conformations that contribute to K* partition

functions are the result of minimization-aware DEE

(iMinDEE16,28). This means that even if two conforma-

tions in the ensemble populate the same torsional well

for a given rotamer (or RC), they will in general mini-

mize to different conformational states within that well

due to the influences of their different surroundings. K*
computes a large ensemble, so multiple conformational

states are indeed likely to be present per torsional well.
Furthermore, the same conformation (in terms of
rotamers and/or RCs) may minimize differently in the
bound versus unbound states due to the presence versus
absence of the ligand. In practice, we have observed that
the bound and unbound rotamer conformations predicted
by K* can have obviously different means and variances,
and are statistically significant as different populations.
This result suggests that K* has the potential to correctly
model induced motion in torsional wells using its ensem-
bles, particularly in light of other studies showing that
population shifts within torsional wells often occur upon
binding.70,71 The partition functions, and quotients of
the bound and unbound states, should reflect such popu-
lation differences. Hence, K* can model a measure of con-
formational entropy and how it changes upon binding.

Nevertheless, K*, like any finite sum, is a discrete
approximation to true continuous entropy. Given this dis-
crete model, K* guarantees a provably-good approxima-
tion, e-close to the binding constant in the model above
(see Ref. 16). Unfortunately, partition functions based on
discrete ensembles are imperfect reporters of conforma-
tional entropy, since they are computed not over all possi-
ble conformational states of the protein but rather over a
putatively representative low-energy subset: the discrete set
of energy-minimized tuples of RCs at all flexible residues.

Some additional error may be introduced by the

choice of shear and backrub parameter ranges for RCs.

For example, in principle, one could choose very closely

spaced shear and backrub parameters, and then the back-

bone conformational entropy would be weighted too

heavily because of the artificially denser distribution of

backbone conformational states (compared to sidechain

conformational states). However, the DEEPer/K* hybrid
algorithm avoids the bias toward excessive weighting of
backbone conformational entropy in at least two ways.
First, such errors will cancel out somewhat when the par-
tition functions in the bound and unbound states are di-
vided. Second, having only a single parameter interval
for each shear or backrub will usually make each RC
(and thus, each sufficiently low-energy tuple of RCs) cor-
respond to its own energy well.

Finally, the DEEPer/K* approximation is analogous to

the iMinDEE/K* approximation currently used in OS-

PREY50,61 which computes partition functions over the

discrete set of tuples of continuous rotamers at all flexible

residues. MinDEE/K* and iMinDEE/K* have been to shown

to produce improvements in predictions of binding affin-

ity.5,8,10,14,16 Notably, K* provably computes the partition

function for its specified flexibility model (DEEPer or rigid-

backbone) within a user-specified margin of error e. Thus,

the introduction of approximate backbone conformational

entropy through the combination of DEEPer with K* is also

expected to increase the accuracy of predictions.

Summary

Overall, these results illustrate the important point that

sidechain motions are tightly coupled to backbone

motions [Fig. 11(b) and 14(b)]. In particular, rotamer
switches can be enabled either by large discrete backbone
motions such as partial structure switches or by small con-
tinuous backbone motions such as shears and backrubs.
To model this hierarchy of conformational changes,
DEEPer includes a broad repertoire of empirically moti-
vated and biophysically realistic backbone move types of
various magnitudes, and thus is well equipped to study
functionally relevant backbone-sidechain couplings in both
natural and designed proteins. This coupling is analogous
to the utility of small adjustments to structures in multiple
structure alignment, which have been found to produce
improvements out of proportion to their size.72

The ability of DEEPer to provably search continuous
sidechain and backbone conformational space can be
useful for work involving non-provable algorithms as
well. Because DEEPer reliably predicts the correct GMEC
or ensemble given an energy function and a set of per-
turbations, tests of DEEPer can be used as tests of mod-
eling assumptions, which can allow generation of more
accurate input models for other algorithms (particularly
when modeling backbone flexibility). Additionally, the
DEEPer GMEC energy is a lower bound on the GMEC
energy that any other algorithm can find with the same
biophysical model, so DEEPer can provide a benchmark
for other highly flexible protein design algorithms.

CONCLUSIONS

DEEPer provides several advantages over previous algo-

rithms. Due to its continuous, provably complete search
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over both sidechain and backbone degrees of freedom, it

finds GMECs and partition functions that are more accu-

rate with respect to the energy function, resulting in more

trustworthy binding predictions and protein or drug

designs. DEEPer’s empirically motivated perturbations

help to choose appropriate backbone conformations out
of the many possibilities in a way that combines computa-
tional tractability with biophysical feasibility. Nevertheless,
additional, different perturbations can be easily incorpo-
rated in the future due to the accommodating RC frame-
work and indirect pruning method. DEEPer can also use
different pairwise energy functions or constraints on the
degrees of freedom (e.g., different rotamer definitions or
bounds on perturbation parameters) without modification
of the algorithm. The energy function and constraints can
be derived from either physical or knowledge-based sour-
ces. For example, if a more accurate treatment of solvation
than that provided by EEF1 is desired, the pairwise Pois-
son-Boltzmann solvation model of Vizcarra et al.73 could
be used instead. Computational tests exploring both
sequence and conformational space for 64 proteins help
confirm that DEEPer enables a biophysically realistic
search of plausible backbone states and consistently yields
lower-energy structures than even a continuously flexible
search of sidechain conformations.
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at 1.8 Å resolution. J Mol Biol 1987;194:531–544.

69. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK,

Richardson JS, Richardson DC. Visualizing and quantifying molecu-

lar goodness-of-fit: small-probe contact dots with explicit hydrogen

atoms. J Mol Biol 1999;285:1711–1733.

70. Frederick KK, Marlow MS, Valentine KG, Wand AJ. Conformational en-

tropy in molecular recognition by proteins. Nature 2007;448:325–329.

71. Wang C, Schueler-Furman O, Baker D. Improved side-chain model-

ing for protein-protein docking. Protein Sci 2005;14:1328–1339.

72. Menke M, Berger B, Cowen L. Matt: Local flexibility aids protein

multiple structure alignment. PLoS Comput Biol 2008;4:e10.

73. Vizcarra CL, Zhang N, Marshall SA, Wingreen NS, Zeng C, Mayo

SL. An improved pairwise decomposable finite-difference Poisson-

Boltzmann method for computational protein design. J Comput

Chem 2008;29:1153–1162.

DEEPer Flexible-Backbone Design Algorithm

PROTEINS 39


