Share Documentation

Jeff Martin
April 13, 2009

1 Introduction

The Share framework is intended to be a library of general APIs and codes to perform mundane tasks related
to protein modeling. To the author’s knowledge, no general freely-available APIs implemented in Java exist
to perform these tasks. To be fair, the implementations provided in this project are in many clases simplistic
(and in a few cases incomplete), but they perform sufficiently well to support the needs of the JDSHOT
project when working with p53 - the only project currently built on top of Share. Also, the author does not
suggest that the implementations of functions/classes here are necessarily the best way to do it and would
be happy to hear suggestions for improvement.

Tt is the author’s goal that this framework be (as the name might imply) shared with developers interested
in protein modeling to provide a basis for starting new projects quickly.

2 Packages
All packages are under the root package/namespace: edu.duke.donaldLab.share

(root) The root package houses the main function for unit testing

atomType Code for specifying types for atoms (e.g., C.1, C.ar, N.1, N.3) and van der Waal radii.
This is configured using the .atomTypes resource files.

bond Code for specifying bonding structure for sets of atoms. Bonds are represented as
edges in a graph and can be configured per amino acid and backbone state (i.e.
normal vs terminus) using the .bonds resource files. Performing BFS in this graph
is also supported using iterators. This package is incomplete (not all amino acids are
defined), but is sufficient for p53.

clustering This code provides methods to cluster sets of points using an implicit Euclidean
distance metric as well as using a distance matrix. The Euclidean method is rather
sophisticated and fast (!), but the distance matrix method is currently very naive and
extremely slow.

geom These classes represent generic geometric objects such as boxes and spheres and can
perform intersection tests between pairs of these objects. Also implemented is an
algorithm that computes the min bounding sphere for a set of points.

io The command-line argument processor is implemented here along with a few extra
classes to operate on streams.

kinemage This package provides a simplistic model of the kinemage format and provides an API
for a subset of its features. Also included is code to render geometric objects (e.g.,
proteins, NOEs) into the kinemage format.

http://kinemage.biochem.duke.edu/software/king.php

mapping

math

minimize
mol2

nmr

pdb

perf

protein

pseudoatoms

steric
test

util

Classes here perform various mappings between various namespaces. For example, this
code can map between a couple atom naming conventions found in PDB and MR files.
It also maps atom addresses between text formats (e.g., resid 36 and name HE22
and segid A) and a more efficient binary format. In particular, the atom naming con-
vention mapping is incomplete (but sufficient for p53), but can be adjusted/improved
by modifying the .map resource files.

The math package contains vector libraries in 3 and higher dimensions, matrix oper-
ations in 3 and 4 dimensions, and higher-dimensional analogues to the objects in the
geom package. Implementations for quaternions are also included along with a class
that computes optimal rotations between two point sets under an RMSD objective
function.

Wrapper classes for the CNS integration
For now, contains a single class that exports proteins in the MOL2 format.

Contains code for reading/writing NOEs from MR files, mapping these NOEs to a
protein in memory, and a class that removes all atoms from a protein object except
for those referenced by NOEs (useful as an optimization).

Contains code to read/write PDB files into/from protein memory objects. Also has
a class to update PDB files written by CNS to the more modern format.

This package contains timers and progress bars.

This package contains all the classes needed to represent a protein in memory. Protein
objects in memory are organized in a heirarchical structure as follows: A protein can
contain many subunits. A subunit can contain many residues. A residue can contain
many atoms. Finally, an atom can contain many models. Each model for an atom
is essentially a 3D point specifying the atom’s position. Also, two schemes exist for
addressing atoms in a protein object. The readable format (ReadableAtomAddresser)
is human-readable but slow to process. There is also binary format (AtomAddresser)
that is not human readable, but is much faster.

Implementation of pseudoatoms for proteins. This package is configured using a

resource file pseudo.atoms.
Performs steric checking for protein objects.
This package contains the unit tests

Miscellaneous code

3 Resources

Resources are “extra” files included in the program distribution that are used during execution (e.g., config-
uration, settings, etc). These files get baked into the JARs under the package resources with the exception
of the files under resources.test. Testing files are excluded from all distribution files. When writing code to
read these files, one must use methods in the class loader to get an input stream for the resource. Simply
opening a file at that path will only work in development. In the deployed setting (when the application is
executed from JAR files), the paths will not be available. Example code to load a resource file is as follows:

InputStream in = getClass().getResourceAsStream("/resources/myResource.file");

Note that getClass() might not work in all settings. However, any reference to an object of type Class is
sufficient.

4 Testing

Wherever possible, code is written such that it allows unit testing to ensure component correctness. In a
nutshell, unit testing is the practice of writing a little extra code (unit tests) to execute application code and
verify that the result is correct. The unit tests for this project are implemented using the JUnit automated
testing framework.

The code is also written using the built-in assert library for java. However, the asserts are not enabled
at runtime by default. When running code for debugging purposes, it is useful to turn on the asserts to help
trap errors. This can be done by using the java VM argument -ea.

http://www.junit.org

	Introduction
	Packages
	Resources
	Testing
	Compiling

