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Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows
one to study protein structure and dynamics in solution. An important bottleneck in NMR protein
structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based
assignment (SBA) aims to solve this problem with the help of a template protein which is homologous
to the target and has applications in the study of structure–activity relationship, protein–protein
and protein–ligand interactions. We formulate SBA as a linear assignment problem with additional
nuclear overhauser effect constraints, which can be solved within nuclear vector replacement’s (NVR)
framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time
Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th
Annual Int. Conf. Research in Computational Molecular Biology (RECOMB), Berlin, Germany, April
10–13, pp. 176–187. ACM Press, New York, NY. J. Comp. Bio., (2004), 11, pp. 277–298; Langmead,
C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for
automated NMR resonance assignments. J. Biomol. NMR, 29, 111–138). Our approach uses NVR’s
scoring function and data types and also gives the option of using CH and NH residual dipolar
coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR’s data
set as well as on four new proteins. Our results are comparable to NVR’s assignment accuracy on
NVR’s test set, but higher on novel proteins. Our approach allows partial assignments. It is also
complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows
us to analyze the information content of each data type and is easily extendable to accept new forms

of input data, such as additional RDCs.
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1. INTRODUCTION

The 3D structure of a protein plays a critical role in
defining the protein’s function. High-throughput protein
structure determination methods are very important to obtain
structural information quickly and accurately. The two
main experimental techniques for structure determination
are X-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy. About 85% of the structures in the
Protein Data Bank (PDB) were determined using X-ray

crystallography, whereas approximately 15% were solved using
NMR. Not all proteins can be crystallized and studied by X-ray
crystallography. Moreover, NMR allows one to solve protein
structure in solution.

In NMR, various experiments are performed on the protein.
The protein is excited via radio frequency energy, and the
resulting signal (free induction decay) is recorded. This signal
is transformed into a spectrum via Fourier transform. In
the resulting spectrum, each peak corresponds to a tuple
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of atomic nuclei. In NMR, the first challenge is to pick
the peaks and to separate the real signal from noise. This
is largely automated. The second challenge is to find the
mapping between the peaks and the atoms. This is called the
assignment problem. The assignment problem is not difficult
for very small molecules. However, for very large molecules
(e.g. proteins), the assignment problem is very difficult, and
is one of the primary computational challenges in NMR.
Additionally, NMR data is noisy (because of peak crowding,
overlap and missing or extra peaks), which makes the problem
even more difficult. Once the assignments are made, traditional
NMR structure determination proceeds by minimizing a hybrid
energy potential, which has terms for the force field, as
well as experimentally derived constraints. There is also a
new linear time algorithm that determines protein backbone
structure accurately by solving, in closed form, systems of low-
degree polynomial equations formulated using residual dipolar
coupling restraints [1].

Structure-based assignments (SBAs) denote automated
assignment given prior information in the form of the putative
structure (‘template’) of the protein. By analogy, in X-ray
crystallography, the molecular replacement technique allows
solution of the crystallographic-phase problem when a ‘close’
or homologous structural model is known, thereby facilitating
rapid structure determination [2]. An automated procedure for
rapidly determining NMR assignments given a homologous
structure will similarly accelerate structure determination.
Furthermore, even when the structure has already been
determined by crystallography or homology modelling, NMR
assignments are valuable to probe protein–protein interactions
and protein–ligand binding (via chemical shift (CS) mapping or
line-broadening). Previous SBA algorithms include CAP [3, 4],
nuclear vector replacement (NVR) [5, 6] and MARS [7]. CAP
is an RNA assignment algorithm which performs an exhaustive
search over all permutations and which has an exponential time
complexity. The approach of Hus et al. [4] applies maximum
bipartite matching to one protein (ubiquitin) using three residual
dipolar couplings (RDCs) per residue and triple resonance
experiments (which correlate three different nuclei through
covalent bonds and require double labelling of the protein).
MARS [7] also uses triple resonance experiments and can
incorporate RDCs as well, if they are available. IPASS [8] is a
novel binary integer programming (BIP)-based assignment (not
an SBA) method on perfect as well as noisy peak lists. It requires
triple resonance experiments which are used for amino-acid
typing and sequential connectivity information. A new integer
linear programming-based method for SBA finds a solution
using heuristics and previous solution computed by IPASS [9].
In contrast, NVR does not require triple resonance experiments
and instead relies on data that requires less spectrometer time
and is therefore less expensive to acquire; furthermore, it has a
polynomial time complexity.

NVR [5, 6] is a molecular replacement-like [2] approach
for SBA of resonances and sparse nuclear overhauser

effects (NOEs). NVR computes assignments that correlate
experimentally measured NMR data types such as HN–
15N heteronuclear single quantum coherence spectroscopy
(HSQC), HN–15N RDCs (in two media), 3D Nuclear
Overhauser Enhancement Spectroscopy (NOESY)-15N-HSQC
spectra (dNN’s) and amide exchange rates, to a given backbone
structural model. However, in our tests, NVR performed poorly
on one new protein and less well than desired on two other
proteins. Furthermore, NVR requires a type of backbone RDC
(NH RDC) in two aligning media and does not accept CH RDCs,
limiting its usability.

In this paper, we develop NVR-BIP, a new tool in NVR
framework that accepts a new form of input data and that works
well on new proteins using BIP. Specifically, our contributions
are as follows:

(i) We enable NVR to use both NH and CH RDCs. This
allows NVR to be applied to a wider range of proteins.

(ii) We develop a BIP formulation of the SBA problem.
(iii) We implement a system that solves the BIP formulation

of the assignment problem using CPLEX.
(iv) We successfully demonstrate our algorithm on NVR’s

test set as well as four additional proteins.

The outline of the rest of the paper is as follows: In Section 2,
we give a brief outline of the NVR framework. In Section 3, we
describe the BIP formulation. Data preparation is in Section 4.
In Section 5, we discuss our implementation of the system
using CPLEX to find the solution of the BIP problem and that
also accepts CH and NH RDCs in one medium. We report our
results in Section 6. We analyze the assignment accuracies using
individual components of the scoring function in Section 7 and
conclude in Section 8.

2. NVR FRAMEWORK

2.1. NVR-expectation-maximization

NVR-expectation-maximization (NVR-EM) [6] is a polyno-
mial time algorithm that uses maximum bipartite matching in
an EM framework to assign a protein using information from a
structural homolog. One set of nodes in the bipartite graphs cor-
respond to the peaks and the other corresponds to the residues.
The edges carry a weight which corresponds to the probability of
assigning that edge. These probabilities form the basis of NVR’s
scoring function and are computed by using the difference in
the backcomputed and observed NMR data, such as RDCs.

NVR-EM performs the assignments in two stages: In the first
phase, the assignments are performed using only CSs. After five
unambiguous assignments are made, the alignment tensor is
computed and the RDCs are also added to the computation.
The alignment tensor is updated as more assignments are
made. NVR-EM has been successfully demonstrated on 3 target
proteins with 21 protein templates.

The Computer Journal, 2010

 at Istanbul S
ehir U

niversity on N
ovem

ber 3, 2010
com

jnl.oxfordjournals.org
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


NVR-BIP: An SBA Algorithm using BIP 3

2.2. Data used by NVR

NVR uses HN–15N HSQC, NOESY-15N-HSQC (yielding
sparse dNN’s, observed between nearby pairs of amide protons),
NH RDCs in two media (which provide global orientational
restraints on NH amide bond vectors). NVR does not require
triple resonance experiments unlike most other assignment
programs, but relies on a few cheap key spectra.

RDCs provide global information on the orientation of
internuclear vectors. For each RDC r , we have the following
RDC equation [10, 11]:

r = DmaxvTSv. (1)

Here Dmax is the dipolar interaction constant, v is the
internuclear bond vector orientation relative to an arbitrary
molecular frame and S is the 3 × 3 Saupe order matrix which
describes the average substructure alignment in the weakly
aligned anisotropic phase. When two sets of NH RDCs are
available, S is computed for two media separately; whereas
when NH and CH RDCs in the same medium are available, S

is unique for both sets of RDCs.
NVR framework has been extended to also accept 15N

TOCSY (for the sidechain CSs) and amide exchange HSQC
(to identify, probabilistically, solvent-exposed amide protons)
in [12]. This resulted in improved assignment accuracy for
distant templates of target proteins. A recent study [13] used
Normal ModeAnalysis to further augment the accuracy of NVR
for distant structural templates.

2.3. NVR’s scoring functions

In NVR, each peak-residue pair has a corresponding probability
of assignment. This probability is derived from seven sources
of information. These correspond to:

(i) CS probabilities as computed from Biological Magnetic
Resonance Bank (BMRB) [14] statistics,

(ii) probabilities obtained from the difference between
observed and predicted CSs (predictions made with
SHIFTS [15]),

(iii) probabilities obtained from the difference between
observed and predicted CSs (predictions made with
SHIFTX [16]),

(iv) probabilities obtained from sidechain CSs measured by
TOCSY,

(v) probabilities obtained from hydrogen–deuterium
exchange data,

(vi) probabilities obtained by RDCs in one medium and
(vii) probabilities obtained by another set of RDCs measured

in a different medium.

For the first four items, the probabilities use a precomputed
mean and standard deviation of the parameter values and assign
a probability for the CSs using a normal distribution assumption.
For the fifth item, the solvent exposedness data of the template

protein atoms are used to give a binary score to the peak-residue
assignment. The last two items also use a normal distribution
assumption to assign a probability.

3. PROBLEM FORMULATION

SBA problem can be formulated as a BIP as follows.
Notation:

P set of peaks
A set of amino acids
sij score associated with assigning peak i to amino acid j

N number of peaks to be assigned (N ≤ |P |)
djl distance between amide protons of amino acids j and l

NOE(i) set of peaks that have an NOE with peak i

NTH distance threshold for an NOE interaction

bjl =
{

1 if djl ≥ NTH,

2 otherwise.

Decision variables:

xij =
{

1 if peak i is assigned to amino acid j,

0 otherwise.

Mathematical model:

Minimize
∑
i∈P

∑
j∈A

sijxij (2)

s.t.
∑
i∈P

xij ≤ 1 ∀j ∈ A (3)

∑
j∈A

xij ≤ 1 ∀i ∈ P (4)

∑
i∈P

∑
j∈A

xij = N (5)

xij + xkl ≤ bjl ∀j, l ∈ A, ∀i, k ∈ P,

∀k ∈ NOE(i) (6)

xij ∈ (0, 1) ∀i ∈ P, ∀j ∈ A. (7)

In the above model, the objective function (2) minimizes the
total score associated with assigning NMR peaks to amino acids.
Constraints (3) ensure that each amino acid is matched with at
most one NMR peak and constraints (4) make sure that each
NMR peak is assigned to at most one amino acid. Constraint (5)
determines the number of NMR peaks to be assigned. In general,
N is equal to the number of peaks. In this case, constraint (4)
can be replaced with ‘=’sign and constraint (5) can be removed.
However, in rare cases, the problem may be infeasible. Thus, N
in constraint (5) can be used as a control parameter to obtain a
partial assignment.

Constraints (6) are the NOE constraints. For instance, if there
is an NOE constraint between the 2nd and 17th NMR peaks, the
distance between the protons corresponding to the amino acids
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that 2nd and 17th peaks are assigned to is expected to be less
than a threshold (NTH). If we consider two amino acids, j and
l, if the distance between the protons of the amino acids j and l

is less than NTH, these two amino acids can be assigned to the
2nd and 17th peaks (or to 17th and 2nd peaks). If the distance
between the protons of the amino acids j and l is more than
NTH, then only one of these amino acids can be assigned to
peaks 17 or 2. The distance between the protons of amino acids
j and l is measured between amide protons of these two amino
acids.

Constraints (6) are formulated for each NOE relationship
and amino-acid pair. In practice, this creates a large number
of constraints and the problem may be intractable for large
proteins. To remedy this, we reformulated the NOE constraints
as follows:

xij +
∑

k∈NOE(i)

xkl ≤ bjl ∀j, l ∈ A, ∀i, k ∈ P (8)

Each constraint in (8) puts together all peaks that have an
NOE relationship with peak i, instead of considering each
pair of peaks having an NOE relationship separately. This
formulation is possible since only one peak can be assigned to an
amino acid, as restricted in constraints (3). The new formulation
reduces the number of NOE constraints significantly. Finally,
constraints (7) define the decision variables as binary. Note
that we further reduce the problem size by setting the values
of xij variables equal to 0 if the corresponding probability is
0 according to one or more parts of the scoring function in
Section 2.3.

The assignments are obtained by solving the above described
mathematical model to optimality and determining the optimal
xij values. In the first stage, the assignments are made
without using the RDCs. An alignment tensor is obtained
from these assignments, and then RDC’s are added to the
scoring function to determine the values of the xij variables.
The determination of this alignment tensor (which involves the
recomputation of the backcomputed RDCs) is continued until
the assignment accuracies converge and the final assignments
are obtained.

4. DATA PREPARATION

We tested our approach on NVR’s test set [6] (consisting
of ubiquitin, streptoccal protein G and lysozyme), as well
as four additional proteins: human Set2-Rpb1 interacting
domain (hSRI), the FF Domain 2 of human transcription
elongation factor CA150 (RNA polymerase II C-terminal
domain interacting protein) (ff2), the zinc finger domain of
the human DNA Y-polymerase Eta (pol η) and B1 domain of
streptococcal protein G (GB1). The CSs, RDCs and NOEs for
these proteins were collected by Dr. P. Zhou at Duke University
except for GB1 for which RDCs were not collected. Since the
GB1 structure in the PDB (ID: 3GB1) does not have CH RDCs,

we used the CH and NH RDCs from GB3 (PDB ID: 1P7E)
which is homologous to the structure of GB1 (The backbone
RMSD between 1P7E and 3GB1 is 0.5Å). We obtained CH
RDCs for ubiquitin from its .mr file in the PDB (1D3Z). We
simulated the TOCSY data for ff2 by predicting its CSs with
SHIFTX [16]. We parsed these CSs to extract the sidechain
proton CSs. We extracted the sidechain proton CSs for hSRI and
pol η from their BMRB [14] entry (bmrb #6834 and #15160,
respectively). For GB1, the collected CS data contains the
sidechain proton CSs from which we assembled the TOCSY
data. We simulated the HD-exchange data from the .mr file for
the PDB entry 2A7O for hSRI and PDB entry 2I5O for pol η,
following the procedure in [6]. We did not simulate the HD-
exchange data for ff2 since the PDB file we used as a template
(2E71) does not have a corresponding .mr file. We used the HD-
exchange data from [6] for GB1. We extracted the NH- and CH-
bond vector coordinates for ubiquitin from the corresponding
PDB files listed in Table 3, for hSRI from pdb ID 2A7O, for ff2
from pdb ID 2E71, for pol η from pdb ID 2I5O and for GB1
from pdb ID 3GB1. We extracted the backbone NOEs (NOEs
between Hα and amide protons) for hSRI, ff2, ubiquitin, pol η

and GB1 from the list of assigned NOEs by HANA [17]. This
amounts to 156, 105, 155, 78 and 138 NOEs, respectively. The
summary of the RDC data we used is given in Table 1. Table 2
contains information on the HSQC data. The remaining data is
from [6].

TABLE 1. The number of observed and missing RDCs. For the
remaining proteins, we use the same RDC data as in [6].

Protein RDCs

Observed # Missing # (%)

NH CH NH CH
RDCs RDCs RDCs RDCs

Ubiquitin 63 57 9 (13%) 15 (21%)
hSRI 60 56 36 (38%) 40 (42%)
ff2 51 50 29 (36%) 30 (38%)
pol η 24 19 7 (23%) 12 (39%)
GB1 42 44 13 (24%) 11 (20%)

TABLE 2. The number of observed and missing HSQC peaks. For the
remaining proteins, we use the same data HSQC data as in [6].

Protein HSQC peaks

Observed # Missing # (%)

ff2 55 25 (31)
hSRI 95 1 (1)
pol η 31 0 (0)
GB1 54 1 (2)
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5. IMPLEMENTATION

In NVR framework, only NH RDCs are used and these must be
obtained in two separate media. Extending NVR to accept CH
and NH RDCs in one medium requires only a single alignment
tensor, instead of two separate ones. There is also a simple
scaling of the CH RDCs to take into account the differences
in the gyromagnetic ratios and the internuclear bond vector
lengths. Changing one of the NH RDC components of the
scoring function into a CH RDC is then straightforward.

The parameters of the algorithm were set differently for three
proteins. For 1AAR, pol η and GB1, the NOE distance threshold
was set 0.07, 0.20 and 1.5Å higher; in addition, for pol η the
CS maximum deviation from the predicted value by SHIFTX
is multiplied by a coefficient of 3.90, and similarly for GB1
the TOCSY probability thresholding is commented out. These
changes were done for reporting the results with both NVR-EM
and NVR-BIP.

The system that we implemented to solve the BIP problem
is ran on Matlab and on IBM ILOG OPL Development Studio
v.5.5 with mathematical programming engine CPLEX v.11.0.
ILOG CPLEX is a state-of-the-art optimization software that
can solve large-scale linear, integer and quadratic programming
problems. We use NVR-EM’s source code which is written
in Matlab and which we enabled to accept CH RDCs. Using
NVR-EM’s source code, we output a scoring matrix which
includes the sum of the minus logarithm of the probability of
assignments according to each of the first five components of
NVR’s scoring function in Section 2.3. We output a very large
score for a peak-residue pair if the probability is 0 according to
at least one component of the scoring function. If RDCs are also
included in the scoring function computation, the corresponding
alignment tensor is computed using the assignments obtained
from an earlier run for that protein. This alignment tensor is
used to compute the RDC scoring matrices (constraints (6)
and (7) in Section 2.3) which are also added to the overall
scoring matrix. In addition to the scoring matrix, we output
a matrix that contains the binary distances between pairs of
protons, which is 1 if the corresponding pair of protons is
within a threshold distance, and 0 otherwise. We vary the
distance threshold for an NOE relationship so that it is smaller
for smaller proteins, and large for larger ones. We finally
output the list of NOE constraints. These three files provide
the necessary data to formulate the BIP problem and find
the optimal assignments. We repeat the computation with the
RDCs until the assignments converge. It takes maximum of four
iterations for the assignments to converge. The solution time of
CPLEX in each iteration varies from a few seconds to about
30 min depending on the problem size and structure on an Intel
Pentium T2130 1.86 GHz processor with 1 GB of RAM.

In order to find near-optimal assignments, we added a
constraint that the score should be above a threshold into
ILOG CPLEX. However, we found that generating near-optimal
assignments using this method could be very time-consuming

as CPLEX reduces the gap between the current score and the
optimal to a low value and then continues the search in order
to guarantee the optimal solution according to tolerance limits.
One solution we implemented is to put a time limit, in which case
the returned solutions may not reflect the best k solutions. An
alternative method to generate near-optimal assignments faster
is Monte Carlo simulation which starts from a given assignment
and explores its neighborhood by switching the assignment of
the peaks or by assigning a random peak to an unassigned
residue, while at each step making sure that the NOE constraints
are satisfied and an assignment deemed impossible by one of the
scoring sources is not made. We ran the simulation at different
(constant) ‘temperatures’ in order to explore the neighborhood
of the optimal solution.

6. RESULTS

Our results are given in Tables 3–6. The assignment accuracy
without the RDCs is provided in the second column and the
accuracy with the RDCs is provided in the third column. The
addition of RDCs improved the assignment accuracy by 3–26%.
We obtained perfect assignments for three proteins (1GB1,
2GB1 and pol η) even without RDCs. Our accuracies are

TABLE 3. Results on ubiquitin.

PDB ID Accuracy Accuracy Accuracy
without with with 4 RDCs/

RDCs (%) RDCs (%) residue (%)

1UBI 87 97a 100
100b

1UBQ 87 97a 100
100b

1G6J 87 97a 96
93b

1UD7 81 97a 97
97b

1AAR 79 97a 97
100b

aWith NH RDCs in two media.
bWith NH and CH RDCs.

TABLE 4. Results on streptococcal protein G.

PDB ID Accuracy without Accuracy with
RDCs (%) RDCs (%)

1GB1 100 100
2GB1 100 100
1PGB 96 100
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TABLE 5. Results on lysozyme.

PDB ID Accuracy without Accuracy with
RDCs (%) RDCs (%)

193L 78 100
1AKI 78 98
1AZF 74 94
1BGI 75 97
1H87 77 100
1LSC 74 100
1LSE 75 98
1LYZ 79 82a

2LYZ 75 91
3LYZ 79 90
4LYZ 75 91
5LYZ 75 91
6LYZ 75 96

awith only one set of RDCs.

TABLE 6. Results on ff2, hSRI, pol η and GB1.

Protein Accuracy without Accuracy with
name RDCs (%) RDCs (%)

ff2 85 93
hSRI 73 89
pol η 100 100
GB1 96 100

comparable to the accuracies in [6]. However, our assignment
accuracies are better than or same as the accuracies obtained by
NVR-EM for hSRI, ff2, pol η and GB1, for which NVR-EM
results in 16, 73, 100 and 87% assignment accuracy, whereas
our implementation results in 89, 93, 100 and 100% assignment
accuracy, respectively. We tested both the combination of CH
and NH RDCs and only NH RDCs in two different media
for ubiquitin (Table 3). Using CH RDCs instead of NH RDCs
gave similar results. We also tested combining all four RDCs
for ubiquitin in Table 3. Note that 1AAR is an additional
template not tested in [6] and for which NVR-EM resulted
in 87% assignment accuracy whereas our approach resulted in
97–100% accuracy depending on the set of used RDCs. Note
also that for GB1 we have two sets of data (except the HD-
exchange data) and the results are very similar.

In Table 5, with 1LYZ as a template, the incorporation of both
sets of (NH) RDCs resulted in an infeasible solution, i.e. there is
no assignment that satisfies all constraints. This is due to one NH
RDC for the residue R14 whose backcomputed RDC is far away
from the experimental RDC and the corresponding probability
is 0. This makes it impossible to assign the corresponding peak

to the residue R14 and causes an infeasibility. Therefore, we
assigned 1LYZ using only one set of NH RDCs.

We also studied how close the score corresponding to 100%
correct assignment is to the optimal assignment’s score. For
the tested proteins which did not result in 100% correct
assignments, the 100% correct assignment score was within
5% of the optimal assignment score for 12 cases, between 5
and 10% for two cases and between 10 and 21% for three
cases. We also found the best near-optimal assignments for four
representative proteins: 1UBI (with NH RDCs), hSRI, ff2 and
1AZF. We found the 100% correct assignment for 1UBI as the
seventh best solution. For the other three proteins, the 100%
correct assignment was not in the top-10 best solutions.

We then looked at reducing N in the problem formulation and
assigning only a subset of the peaks. We found that reducing the
number of peaks to be assigned in general lowers the assignment
accuracy.

7. CONTRIBUTION OF EACH COMPONENT
OF THE SCORING FUNCTION
TO THE ASSIGNMENTS

We studied the contribution of each of the components of
the scoring function to the assigments. These components are
described in Section 2.3 and are used to derive the scoring
matrix.We solved the assignments using each of the components
of the scoring function combined with NOE constraints. We also
considered the effect of using the joint scoring function due to
CSs or RDCs, and not using the NOE constraints at all in the
assignments. We did this study for the proteins in our data set.
The results are in Fig. 1. The results with RDCs were obtained
assuming a perfect alignment tensor.

It can be seen from Fig. 1 that on average the highest
assignment accuracies using an individual scoring function
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FIGURE 1. Assignment accuracies with each component of the
scoring function separately and NOEs.
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component and NOE constraints are obtained with RDCs,
followed by CSs as predicted by SHIFTX, then TOCSY. Joint
CS probability is followed by BMRB and CSs as predicted
by SHIFTS. The NOE constraints boosted the assignments by
34% on average when all of the terms of the scoring function
are present.

8. CONCLUSION AND FUTURE WORK

In this paper, we used the data types and scoring function
in NVR framework to develop NVR-BIP, an SBA scheme
which returns the resonance assignments corresponding to
the optimum of the scoring function subject to the NOE
constraints. We also extended NVR’s input data types to accept
CH RDCs. Our results are demonstrated on NVR’s test set as
well as on four additional proteins. Our assignment accuracies
are comparable on NVR’s test set. However, our approach
reached 89–100% assignment accuracy on four novel proteins,
whereas the performance of NVR-EM was below the desired
levels. This reveals that NVR-EM may perform poorly on
new proteins and NVR-BIP may remedy this. The reason why
NVR-EM may perform poorly is that it includes many built-in
constants and involves an assignment algorithm which may
not be generalizable. Even though NVR-BIP also has built-
in constants, they are fewer and the algorithm consists of a
general optimization approach. Since our approach is very
simple to implement and our preliminary results are promising,
we plan to extend our tests on more proteins in the future.
We also plan to reduce the number of built-in constants in
NVR-BIP.

A nice feature of this work is that our formulation is
independent of the scoring function. As future work, we plan to
test other scoring functions such as MARS [18, 19]. One other
aspect of this work is that we add each component of the scoring
function linearly; this allowed us to study the information
content of individual components by testing our algorithm with
each of these components separately in Section 7. It is also
the case that these components are dependent on each other,
such as the probabilities corresponding to CSs obtained using
SHIFTS [15] and SHIFTX [16].As future work, we plan to study
optimal ways of combining these data sources, rather than by
using simple addition.

One can obtain partial assignments by setting N < |P |
in constraint (5) in Section 3. This allows partially assigning
a protein whose complete assignment is infeasible due to
unsatisfied constraints. However, we found that when a feasible
complete assignment exists partial assignments have in general
lower assignment accuracy compared with assigning all the
peaks. The reason is that as the number of peaks to be
assigned is reduced, the NOE constraints become invalidated.
For instance, in Section 3, if peak i is not assigned to any
residue, constraint (6) is always satisfied for peak k. Therefore,
it seems preferable to assign all the peaks when a solution exists.

However, in the case where there are extra peaks, assigning a
subset of them could improve the assignment accuracy.

One area of future work is to tolerate errors in the data to
avoid infeasibilities and to make the program more robust.
The reason why the problem is infeasible in certain cases
is because we do not allow the assignment of a peak to a
residue if any of the data types sets a probability of 0 for
that assignment. This helps reduce the number of variables and
makes the problem easier to solve. However, if the template is
too distant from the target protein, or due to noise, if there is a
component of the scoring function which assigns a probability
of 0 to a particular assignment, we may want to still allow
the corresponding peak/residue assignment. For instance, as
discussed in Section 6, the problem is intractable for 1LYZ
with both sets of RDCs due to only one noisy RDC value.
Similarly, with a distant template or due to noise, a couple
of protons which have an NOE between them may be more
distant than our distance threshold. A possible solution is to
use Bayesian statistics to update the assignment probability
with new evidence from the various components of the scoring
function, rather than assigning it to 0 if at least one of the
components returns 0.

A way to solve the larger problems which CPLEX cannot
solve to optimality is to use relaxation/decomposition or
metaheuristic approaches such as ant colony optimization or
tabu search. While these approaches do not guarantee optimality
and usually provide approximate solutions, nevertheless the
assignments obtained could be valuable for an otherwise
intractable problem.

Our approach handles missing peaks. In fact, as shown in
Tables 1 and 2, our approach works with up to 42% missing data.
As future work, we plan to extend our approach to handle extra
peaks as well. To handle extra peaks and to achieve robustness
against noise, one possibility is to use Normal Mode Analysis
to obtain an ensemble of protein structures and to combine
the assignments for each of these structures using a voting
scheme as in [13].

Another area of future work is to incorporate the intensity
information of the NOEs into the computation to improve the
assignments, as well as to take into account ambiguous NOEs.

Our approach is complete, in the sense that it can return
all assignments consistent with the constraints and that are
within a delta score of the optimum assignment. Returning
near-optimal assignments can be accomplished by iteratively
solving the BIP problem with the additional constraint that
imposes a lower bound on the objective function value or using
Monte Carlo simulation as described in Section 5. The lower
bound ensures finding a new assignment with a higher score
than the one previously obtained. On the other hand, Monte
Carlo simulation does not guarantee returning all near-optimal
solutions in the order of increasing score, but is nevertheless
useful to quickly explore the neighborhood of the optimal
solution. As future work, we plan to investigate the ensemble
of near-optimal assignments using an algorithm such as in [20],
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and also consider using a pair of scoring functions and find
those assignments that have the minimum combination of scores
according to these functions.

Note that it is possible to determine the alignment tensor using
other methods such as a grid search instead of by following a
two-stage strategy. However, it has been shown [18] that the
alignment tensor obtained with assignments of as low as 50%
accuracy has a very similar orientation as the correct alignment
tensor.

While doing our experiments with NVR-BIP, we became
aware of another approach for resonance assignments (not an
SBA approach) using BIP and IPASS [8]. Our approach is
complementary to IPASS by the data types and the structural
template that we use. For instance, IPASS does not use RDCs.
We thus study the amount of information available in few key
spectra. There is also a more recent integer linear programming
approach for SBA based on IPASS that uses IPASS to bootstrap
the assignments and does not guarantee returning the global
optimum of the scoring function [9].

It must be mentioned that using CH and NH RDCs in
the NVR framework requires us to establish correspondence
between CH and NH RDCs, to determine they are in the
same residue. This can be achieved using triple resonance
experiments [18]. However, it is rather straightforward to
obtain assignments with triple resonance data alone using
one of many tools that are available, such as MARS [7].
We propose that NVR with CH RDCs is nevertheless a
valuable tool that allows to cross-check the assignments
obtained using triple-resonance data. Our contribution with CH
RDCs is similar to [4] since both approaches require triple
resonance experiments, but do not use sequential connectivity
information. However, our approach is different from [4]
since the assignment algorithm based on maximum bipartite
matching proposed in [6] is not successful with NVR’s data
as shown in [6]. Furthermore, our approach is tested on
multiple proteins. Finally, some of our examples are based
solely on NH RDCs, for which triple resonance experiments
are not required, offering NVR a distinct advantage in terms
of data acquisition time and expense over other assignment
programs.

AVAILABILITY

The NVR-BIP software is available upon request and is
distributed open source under the GNU General Public License.

ACKNOWLEDGMENTS

We thank Dr. Pei Zhou for providing us with data for novel
proteins and Dr. Hakan Erdoğan, Mr. Jianyang (Michael)
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