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Chapter 1

Introduction

OSPREY (Open Source Protein REdesign for You) is a suite of programs for computational
structure-based protein design. OSPREY is developed in the lab of Prof. Bruce Donald at Duke
University. This user manual is for version 1.0 of the software.

OSPREY is free software and can be redistributed and/or modified under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of the
License, or (optionally) any later version. OSPREY is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. Full licensing details, including citation requirements for the various different modules
of the software, are found in the document license.pdf enclosed with this package distribution.

OSPREY is specifically designed to identify protein mutants that possess desired target prop-
erties (e.g., improved stability, switch of substrate specificity, etc.). OSPREY can also be used for
predicting small-molecule inhibitors. With certain limitations, the current version of OSPREY can
also model protein-protein and protein-peptide interactions. OSPREY is built around the following
algorithmic modules:

• DEE/A∗: provably-accurate algorithms for protein design that combine Dead-End Elimina-
tion (DEE) rotamer pruning [6, 18] with A∗ conformation enumeration [14]. The DEE/A∗

algorithms score and rank mutation sequences based on the single best conformation for each
sequence, the Global Minimum Energy Conformation (GMEC). Hence, these algorithms are
referred to as GMEC-based. The DEE/A∗ algorithms are typically applied to redesign specific
parts of the protein (e.g., the protein core). For problems where the goal is to improve protein-
ligand interactions, the K∗ algorithm is typically used instead (see below). NOTE: In this
documentation, the term DEE refers to all of traditional DEE [6, 18] (DEE for rigid rotamers
and a rigid backbone), MinDEE [10] (minimized DEE for continuously-flexible rotamers and
a rigid backbone), BD [7] (DEE for continuously-flexible backbones), and Brdee [8] (DEE
for backrub protein motions). In cases where a specific DEE algorithm is referenced, the
corresponding algorithm name (e.g., Brdee) is used explicitly.

• K∗: a provably-accurate algorithm for protein-ligand binding prediction and enzyme re-
design [1, 10, 15]. K∗ computes a provably-accurate approximation (given the input model,
see below) to the binding constant for a given protein-ligand complex by computing parti-
tion functions over ensembles of (energy-minimized) conformations for the bound protein-
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ligand complex and the unbound protein and ligand. Hence, the K∗ algorithm is referred
to as ensemble-based. K∗ is typically applied to predict mutations to protein binding/active
residues in order to switch the substrate specificity toward a novel substrate [1]. K∗ can also
be applied to design small-molecule inhibitors for a given protein (or set of proteins).

• SCMF: a Self-Consistent Mean Field (SCMF) algorithm for computing the entropy of each
residue position in a protein [1, 19]. This algorithm can be used as part of a hybrid mutation
search for enzyme redesign that also incorporates K∗ and DEE/A∗: K∗ can be applied first
to predict mutations to the enzyme active site that improve the target substrate specificity;
SCMF can then be used to identify mutable positions anywhere in a protein, both close to and
far from the active site of an enzyme; finally, DEE/A∗ can be applied to predict mutations
to these mutable positions for further improvement in the target substrate specificity [1].

The basic data and algorithm flow in OSPREY is summarized in Fig. 1.1. The input model
for the OSPREY modules consists of an input structure for redesign, rotamer libraries for proteins
and general compounds (e.g., small-molecule inhibitors), and a pairwise energy function for scoring
and ranking the computational predictions. Additionally, input configuration files specify required
mutation search parameters for the different modules. Computed structures for selected K∗ and
DEE/A∗ mutant predictions can also be generated for further visual and structural analysis by the
user. OSPREY uses MPI for distributed computation.

1.1 Modeling Flexibility

OSPREY is capable of modeling additional protein and ligand flexibility as compared to other
structure-based design approaches. Typically, protein design algorithms use a model with a rigid
protein backbone and rigid rotamers [6, 18]. In contrast, OSPREY is capable of modeling contin-
uous side-chain flexibility (i.e., flexible rotamers) [10] and continuous [7] or discrete [8] backbone
flexibility. The user can select to model different types of flexibility by appropriately manipulat-
ing some configuration file parameters (see Sec. 5.1.1). Additionally, flexibility in OSPREY can
be modeled using conformational ensembles, as in the K∗ algorithm [1, 10]. The K∗ module is
described in Sec. 5.2.

Organization

This documentation is organized as follows:

• Chapter 2 contains installation instructions for OSPREY and other required software pack-
ages.

• Instructions for initializing and starting up OSPREY are provided in Chapter 3.

• The three parts of the OSPREY input model (input structure, rotamer libraries, and energy
function) are described in Chapter 4.

• The various algorithmic modules (DEE/A∗, K∗, and SCMF) are described in Chapter 5, along
with the corresponding input configuration files and instructions for generating structures for
selected mutants predicted by the algorithms.
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Figure 1.1: Basic data and algorithm flow in OSPREY.
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• Chapter 6 provides instructions for applying OSPREY to two special cases of redesign prob-
lems: modeling protein-protein and protein-peptide interactions and modeling explicit water
molecules.

• A detailed walk-through of an actual protein redesign example using K∗, from input setup
to analysis of the results, is described in Chapter 7.

• Appendix A presents a brief overview of the OSPREY classes.

The primary contributors to this version of the OSPREY distribution are: Ivelin Georgiev,
Ryan Lilien, and Bruce Donald.
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Chapter 2

Installation

To be able to run OSPREY, the following additional programs must also be installed: Java,
MPICH2 (http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm), and mpiJava (http://www.
hpjava.org/mpiJava.html). Following the default installation instructions for these programs
should be sufficient on 32-bit machines and some 64-bit machines. On certain 64-bit machines,
however, the following modified installation instructions must be used. These instructions assume
that Java, MPICH2, and mpiJava will be installed as subdirectories in ’/home/you/mpi/’ (modify
this path according to your preference).

(1) Installing 64-bit Java (v. jdk 1.6.0 06). Follow the default installation instructions.
Update your path to make sure that this java version comes first in your path:

export PATH=/home/you/mpi/jdk1.6.0 06/bin:$PATH

(2) Modifying Java. For the mpiJava installation (see below), you may need to copy the file
’jni md.h’ from ’jdk1.6.0 06/include/linux/’ to ’jdk1.6.0 06/include/’:

cd /home/you/mpi/jdk1.6.0 06/include/linux
cp -i jni md.h ../

(3) Installing MPICH2 (v. 1.0.7). Using bash:

tar -xzf mpich2-1.0.7.tar.gz
cd mpich2-1.0.7
export CFLAGS=”-fPIC”
./configure –prefix=/home/you/mpi/mpich2-install –enable-sharedlibs=gcc
make
make install
export PATH=/home/you/mpi/mpich2-install/bin:$PATH

(4) Installing mpiJava (v. 1.2.5). Using bash:

tar -xzf mpiJava-1.2.5.tar.gz
cd mpiJava
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export DEFPINS=”-shared -fPIC”
export LDFLAGSIG=”-shared -fPIC”
export LDFLAG=”-shared -fPIC”
./configure –with-MPI=mpich
make
export LD LIBRARY PATH=$LD LIBRARY PATH:/home/you/mpi/mpiJava/lib
export CLASSPATH=$CLASSPATH:/home/you/mpi/mpiJava/lib/classes

NOTE: ./configure –with-MPI=mpich for mpiJava may generate some errors/warnings: these
can be generally discarded; if at the end of ’make’ there are no errors, then the mpiJava installation
should be successful.

(5) Installing OSPREY. After Java, mpich2, and mpiJava have been successfully installed,
choose a directory where the OSPREY software will be installed, copy all files to that directory,
and compile using:

javac *.java

Some warning statements may be output when javac is called, but these can be generally
discarded. OSPREY should now be installed and ready for use.
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Chapter 3

Setting up OSPREY

3.1 Compute Node Setup

After the installation of all required software is complete (see Chapter 2), OSPREY will be ready
for use. First, MPI must be setup to run on a selected set of compute nodes. Users who are familiar
with MPI may skip to Sec. 3.2. Next, some basic MPI functionality that should be sufficient for
the proper execution of OSPREY is described.

We will assume that the .mpd.conf file has been created and saved according to the instructions
in the MPICH2 Installer’s Guide. We will also assume that the list of available compute nodes
is stored in the file mpd.hosts in the OSPREY code directory. Each line in the mpd.hosts file
corresponds to a single compute node. An example mpd.hosts file may look like this:

linux1
linux2
linux3
linux4
linux5

In this example, there are five compute nodes on which MPI will be started. The user must
make sure that they can ssh into any of these nodes without having to enter a password. One
possible way to do this is to first execute the following commands and then manually login to each
of the selected nodes:

ssh-keygen -t rsa
cp ∼/.ssh/id rsa.pub ∼/.ssh/authorized keys

The following command will set up MPI for the list of nodes in mpd.hosts:

mpdboot -n 5 -f mpd.hosts

The number 5 for the -n argument is the total number of compute nodes on which MPI should
be started; in this case, this number is equal to the total number of nodes in the mpd.hosts file. If
mpdboot is executed from a node not in the mpd.hosts file (e.g., linux6), then -n could be called
with a value of 6 (or less, in which case MPI will be started on only a subset of the nodes in the
mpd.hosts file). To check whether MPI was successfully started on the given set of nodes, the user
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can execute the following command:

mpdtrace

This command should output the names of all of the nodes on which MPI should have been
started. At this point, the user has created a ring of MPI daemons on the desired set of nodes.
MPI-based (e.g., OSPREY) jobs can now be run from the node on which the ring was created. To
exit from the ring, the following command can be used:

mpdallexit

If mpdallexit is called, the mpdboot command must be executed again in order to start up
MPI on the given set of nodes (these nodes need not be the same as before, so the mpd.hosts file
can be modified).

3.2 Starting OSPREY

We will assume that a ring of MPI-ready compute nodes has already been setup according to the
instructions in Sec. 3.1. From the OSPREY code directory, the program can be started using the
following command:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg

This command is parsed as follows:

• The machines file contains a list of nodes on which OSPREY will be executed. This list
should only contain node names found in the mpd.hosts file (Sec. 3.1); however, a node name
can appear more than once, in which case more than one job will be distributed to that node.
An example machines file may look like this:

linux1

linux1

linux1

linux2

linux2

linux3

linux3

• The -np 5 option specifies that the program should be run on five processors (so not all nodes
in the example machines file will be used for the given execution).

• The -Xmx1024M option sets the maximum heap size for java to 1024M. Depending on the
size of the problem, the heap size may have to be increased; for some problems, a smaller
value (e.g., 512M) may be sufficient.

• The mpi option tells OSPREY to start a distributed computation. Note that while there are
some OSPREY commands that can be executed on a single processor, all major commands
require distributed execution.
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• The KStar.cfg file is the main configuration file that specifies some basic parameters required
by OSPREY. KStar.cfg is described in detail in Sec. 3.2.1. This file can have any filename
specified by the -c option; for clarity, we will use the filename KStar.cfg throughout this
documentation.

Once the mpirun command is executed, the following screen is displayed:

OSPREY Protein Redesign Software Version 1.0
Copyright (C) 2001-2009 Bruce Donald Lab, Duke University

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

There are additional restrictions imposed on the use and distribution
of this open-source code, including: (A) this header must be included
in any modification or extension of the code; (B) you are required to
cite our papers in any publications that use this code. The citation
for the various different modules of our software, together with a
complete list of requirements and restrictions are found in the
document license.pdf enclosed with this distribution.

OSPREY running on 5 processor(s)

>

NOTE: The number of processors shown on the output line OSPREY running on 5 processor(s)
can differ between runs and should be equal to the number of processors specified when executing
mpirun.

At this point, the program waits for the user to execute one of the OSPREY commands for
protein redesign. The OSPREY commands are described in Chapter 5. All of the OSPREY
commands require some standard input (e.g., input pdb structure, rotamer libraries, etc.). This
standard input is described in Chapter 4.

3.2.1 Main Configuration File

This section describes the KStar.cfg configuration file. This file contains some parameters related
to the OSPREY energy function (see Sec. 4.3), rotamer library (Sec. 4.2), and steric filter (see
below). A typical file looks like this:

hElect true
hVDW false
hSteric false
distDepDielect true
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dielectConst 6.0
vdwMult 0.95
doDihedE true
doSolvationE true
solvScale 0.8
stericThresh 0.4
softStericThresh 1.5
rotFile LovellRotamer.dat
grotFile GenericRotamers.dat
volFile AAVolumes.dat

The format of each line in the KStar.cfg file is: parameter value, where the parameter and
value are separated by a single space. A description of the parameters is as follows:

hElect/hVDW

Determines if electrostatics/vDW energies are computed for hydrogens; both are boolean
parameters. Typically, hElect should be set to true. In some cases, the user may not be as
confident in the hydrogen positions in the input pdb structure, so the hVDW parameter can
be set to false.

hSteric

Determines if hydrogens are used in steric checks; this is a boolean parameter. If
hSteric is false, then steric clashes involving hydrogens are not pruned by the OSPREY
steric filter.

distDepDielect

Determines if a distance-dependent dielectric should be used; this is a boolean param-
eter. This parameter is typically set to true.

dielectConst

The value of the dielectric constant. The values typically used are between 6.0 and 8.0
with a distance-dependent dielectric (distDepDielect set to true).

vdwMult

A scaling factor for the atomic vdW radii read in from the force field parameters (see
Sec. 4.3).

doDihedE

Determines if side-chain dihedral energies should be computed and added to the total
energy; this is a boolean parameter. This parameter is used only if side-chain dihedral
flexibility is allowed - for MinDEE-based searches (see Sec. 4.3 and [10]). This parameter
should typically be set to true.

doSolvationE
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Determines if implicit solvation energies should be computed and added to the total
energy; this is a boolean parameter. The EEF1 implicit pairwise solvation model [13] is used
in OSPREY (see the description of the eef1parm.dat file in Sec. 4.3 for details).

solvScale

A multiplicative factor that scales the computed solvation energy value before adding
it to the total energy of the system. Recommended values are between 0.5 and 0.8, although
different values may be used depending on the type of problem (e.g., active site vs. protein
surface redesign, etc.).

stericThresh

Steric overlap allowed in the initial (before minimization) steric check. If the vdW
radii for a pair of atoms overlap by more than the value of this parameter, then the current
rotamer-based conformation is pruned from further consideration. This parameter is used for
computational efficiency. The idea is that some initial soft steric clash may be allowed, since
conformations may minimize from such soft clashes; large clashes are not allowed and are
immediately pruned. Larger values for stericThresh will prune fewer rotameric conforma-
tions, resulting in increased computational requirements. Smaller values for stericThresh
may result in too much pruning and in discarding conformations that may have minimized to
low energies. A value of 1.5 is typically used for the stericThresh parameter, with hSteric
set to false (see above). If the input structure is not of high resolution, larger values (e.g.,
2.0) for stericThresh can be used.

softStericThresh

Steric overlap allowed for a fixed rotamer conformation in Brdee redesigns (see Sec. 5.1.3
and [8]). The value of this parameter is typically much lower than the stericThresh value
since no energy minimization is allowed after the steric check. A typical value used for this
parameter is 0.6, although lower values (≥ 0.4) may be used for very high-resolution input
structures.

rotFile

The file that contains the rotamer library data for the natural amino acids (see Sec. 4.2).

grotFile

The file that contains the rotamer library data for general compounds (see Sec. 4.2).

volFile

The file that contains the rotamer volume data (see the Mutation Search Results
discussion in Sec. 5.2.2). This file is only used for K∗ redesigns. If this file does not exist, it
is automatically computed.
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Chapter 4

OSPREY Input Model

Performing redesigns with OSPREY requires four basic types of input: a pdb structure of the
protein (or protein-ligand complex) to be redesigned (described in Sec. 4.1), rotamer libraries for
natural amino acids and (optionally) for general compounds (described in Sec. 4.2), energy function
parameter files (described in Sec. 4.3), and various command-dependent input configuration files
that specify the different mutation search parameters (described in detail for each of the OSPREY
commands in Chapter 5).

4.1 Setting up the Input Structure

After determining the protein or protein/substrate complex for redesign, a structure of that pro-
tein/complex must be used as input for OSPREY. This structure must be in the PDBv3 format,
but other than that constraint, the source of the input structure (e.g., downloaded from the PDB,
obtained from homology modeling, etc.) is not important. Structures using the older PDBv2.3
format can be converted to PDBv3 using programs such as the Remediator from the Richardson
Lab at Duke University [12]. NOTE: When K∗ runs are performed, two separate input structures
can be used: one for the bound protein-ligand complex and one for the unbound (free) protein (see
Sec. 5.2 for details). Typically, the initial input structure must be modified to make it compatible
with OSPREY. Below we describe some typical modifications that are necessary for each input
structure. Generally, due to the lack of standardization in the format of some input structures,
the use of non-standard ligands, and the presence of certain limitations of the structure reader in
OSPREY, manual per-case tweaking of the input structure may be necessary to make it compatible
with the program.

Residues with Missing Atoms

OSPREY requires that no residues in the input structure have missing atoms. Since missing
(heavy) atoms in crystal structures are not uncommon, one of two approaches is suggested in such
cases. First, the entire residue that has missing atoms can be deleted from the input structure.
Alternatively, a program such as KiNG [12] can be used to model the missing atoms in a reasonable
conformation. A disadvantage of the former approach is that the flexible/mutable residues in the
protein may have erroneously reduced constraint on their movement; this approach is therefore
mostly applicable when the deleted residue is far from any residues that are being redesigned. A
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disadvantage of the latter approach is that if the modeled residue conformation is incorrect, then
the flexible/mutable residues in the protein may have erroneous constraints on their movement (too
much constraint where the modeled residue is and too little constraint where the modeled residue
should be). To alleviate this problem, the modeled residue may also be allowed to flex during the
OSPREY mutation search in order to assume a more reasonable conformation.

Adding Hydrogens

OSPREY requires that all hydrogens be present in the input structure. The MolProbity server [4]
is recommended for adding hydrogens to proteins and standard ligands that follow the PDB nomen-
clature. For non-standard ligands (e.g., derived chemical compounds), the Accelrys DS Visualizer
program seems to perform generally well. In many cases, however, manual editing of the proto-
nation states and hydrogen orientation may be necessary for non-standard ligands. It is generally
recommended that the protonated structure be inspected for missing/misplaced hydrogens.

His Residues

His residues require special consideration. OSPREY recognizes three different protonation states
for His residues:

• Both hydrogens are present for Nδ and Nε. In that case, the given HIS residue must be
renamed to HIP in the input structure;

• Both hydrogens are present for Nδ but only one hydrogen is present for Nε. In that case, the
given HIS residue must be renamed to HID in the input structure;

• Both hydrogens are present for Nε but only one hydrogen is present for Nδ. In that case, the
given HIS residue must be renamed to HIE in the input structure;

Steric Shell

When design is performed for proteins with more than 60-100 residues, the computational burden
is significantly increased due to the increased cost of the energy minimization/computation for each
candidate conformation and the increased cost of managing the data structures of the molecule.
In such cases, a reduced steric shell around the flexible parts of the protein can be used, instead
of all residues in the protein. The steric shell (e.g., all residues with a specified cutoff distance
from any of the flexible/mutable residues or the ligand) restrains the movement of the flexible
residues. The idea here is that residues that are far from the flexible/mutable residues should
generally have negligible long-range energy interactions and virtually no steric interactions with
the flexible/mutable residues, and can thus be excluded from the steric shell. Recommended values
for the distance cutoff are 8-9 Å, although smaller values may be used depending on the size of the
protein. For side-chain placement problems, the use of a steric shell should not be necessary, even
for proteins with several hundred residues.

Input Structure Contents

Typically all water molecules and metal ions should be deleted from the input structure. Other than
the protein residues, the input structure should only contain a ligand (if present) and a cofactor
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(if present). The current version of OSPREY allows the ligand to be a natural amino acid or
other small molecule. Protein-protein interactions can be modeled with certain limitations (see
Sec. 6.1). Protein-peptide interactions can also be modeled with certain limitations, as long as
the peptide consists only of natural amino acids (see Sec. 6.1). Cofactors can consist of multiple
entities (residues or even molecules). Explicit water molecules can also be modeled as part of the
rigid cofactor (Sec. 6.2). Generally, however, OSPREY is optimized for redesigning proteins and
for designing protein-small molecule interactions.

Other Considerations

Several additional considerations must be taken into account when fixing the input structure for
OSPREY. First, it is recommended that all TER symbols be removed from the input structure
since otherwise OSPREY may interpret the strand (a special data structure that logically divides
the molecule into a protein, ligand, and cofactor, if present) information erroneously. Second,
OSPREY has no notion of chain IDs when reading the input structure, so if residues from several
different chain IDs (e.g., A, B, etc.) are included, the user must make sure that each residue has a
unique residue number. For example, if there are two residues in the input structure that have the
same residue number (e.g., 5) but different chain IDs (e.g., A vs. B), one of the residues should
be re-numbered (e.g., to 505, assuming there is no residue with that number present in the input
structure). Finally, OSPREY uses atom-atom distances to determine the bond information for the
molecule. Thus, the bond information for input structures with significant steric clashes can be
interpreted erroneously, which can lead to problems with the energy computation (in fact, in such
cases, OSPREY typically reports an error and exits the computation). It is therefore important to
use good input structures with reasonable sterics.

4.2 Rotamer Libraries

Two rotamer libraries are used by OSPREY: for natural amino acids and for general compounds.

Natural Amino Acids

The default rotamers for all natural amino acids, except for Pro, are based on the modal rotamer
values from the Penultimate rotamer library [17]. These rotamers are stored in the file specified
by the rotFile parameter in the KStar.cfg configuration file (see Sec. 3.2.1). Different rotamer
libraries for the natural amino acids can be incorporated by modifying the rotFile file. This file
has the following format. Comment lines that are discarded by the program start with ‘!’. The
first non-comment line in the file contains a single number representing the number of amino acids
for which rotamers are defined in the file. By default, this number is 19 (all natural amino acids
other than Pro; NOTE: mutations to/from Pro are not allowed in OSPREY, so Pro rotamers are
not applicable). The remainder of the file has the following format for each amino acid type:

AA name number of dihedrals number of rotamers
dihedral list one per line
rotamer angles

The AA name is given by the three-letter code for each amino acid. The dihedral list one per line
lines give the atom names (standard PDB format) for the four atoms that form each of the num-
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ber of dihedrals dihedrals for the given amino acid. Each of the rotamer angles lines contains the
number of dihedrals dihedral angle values for the corresponding rotamer; the total number of ro-
tamers is given by the number of rotamers value. For example, by default, Leu has two dihedrals
and five rotamers:

LEU 2 5
N CA CB CG
CA CB CG CD1
62 80
-177 65
-172 145
-85 65
-65 175

To add another Leu rotamer with rotamer angles -85 50, the entry for Leu must be changed to:

LEU 2 6
N CA CB CG
CA CB CG CD1
62 80
-177 65
-172 145
-85 65
-65 175
-85 50

Notice that the total number of rotamers for Leu is increased to 6 and the new rotamer angles
are added at the end of the Leu rotamer list.

NOTE: If a given amino acid type has no rotamers but mutations to this amino acid are
allowed, then an entry must still be present in the rotFile file, such that the number of dihedrals
and number of rotamers values are set to 0. For example: ALA 0 0, or even LYS 0 0 if no
rotamers for Lys will be used (however, setting the rotamers for a natural amino acid, other than
Ala or Gly, to 0 is not recommended).

General Compounds

For ligands that are not natural amino acids, rotamers must be defined in a separate file. This
file is specified by the grotFile parameter in the KStar.cfg configuration file (see Sec. 3.2.1). The
grotFile file has the same format as the rotFile file. The first non-comment line in the file contains
a single number representing the number of compounds (non-amino acid ligands) for which rotamers
are defined in the file. For each compound, the first line of information contains the three-letter
code (as found in the input pdb structure), followed by the number of dihedrals and number of
rotamers for that compound. Note that the number of dihedrals should reflect only the number of
flexible dihedrals (in effect, this is the number of bonds allowed to rotate), rather than the total
number of dihedrals in the compound. For each rotamer (one per line), the values of the (flexible)
dihedral angles are then specified. For example, let us assume we have a ligand whose three-letter
code is CHR and that has two flexible dihedrals and six rotamers; the entry for that ligand in the
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grotFile may then look like this:

CHR 2 6
N1 C2 C3 C4
C2 C3 C4 N5
62 180
-177 68
-177 180
-90 68
-67 180
-62 -68

NOTE: Remember to increase the total number of compounds (the first non-comment line in
the grotFile file) when adding the rotamer information for a new compound.

4.3 Energy Function

The energy function used in OSPREY consists of the Amber electrostatic, van der Waals, and dihe-
dral energy terms [21, 3] and the EEF1 implicit solvation energy term [13]. The Amber force field
parameters are read in from the following files: parm96a.dat, all amino94.in, all aminont94.in,
all aminoct94.in, and all nuc94 and gr.in. The EEF1 parameters are read in from the eef1parm.dat
file. Next, we describe these parameter files in detail.

The parm96a.dat file

The parm96a.dat file contains the force field parameters for the different atom types, including the
parameters used for the vdW and dihedral energy computation. NOTE: A distinction is made
here between atom type, atom name, and element type. The atom name is the name that an atom
has in the input pdb file (e.g., ’CA’ for the Cα atom of a given amino acid). The element type is the
chemical element to which the current atom corresponds (e.g., Cα’s are carbon atoms). The atom
type refers to the force field type that is assigned to the current atom (e.g., a Cα may be assigned
a ’CT’ force field type according to the Amber force field); each force field type has specific force
field parameters which are used in the energy computation for a given structure.

The parm96a.dat file has the same format and virtually the same contents (with some minor
modifications) as the parm96.dat file from the Amber 9 distribution. The Amber parm96.dat
file is a modified version of the parm94.dat force field parameter file. The parameters found in the
parm96a.dat should be sufficient for protein redesigns. In some cases, however, additional atom
types (and the corresponding force field parameters) might be necessary. Additional and updated
force field parameters can be incorporated into the parm96a.dat file, as long as the same format
of the file is used. An example of how to add new force field parameters to the parm96a.dat file is
discussed in detail below.

NOTE: All parameters from the parm96a.dat file are read in by OSPREY; however, the
bond and angle parameters are currently not used as part of the energy function computation in
OSPREY.
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The all aminoX94.in files

The all amino94.in file contains the force field atom types and charges, as well as the atom con-
nectivity information, for all natural amino acids. This file has the same format and virtually the
same contents (with some minor modifications) as the all amino94.in file from the Amber 1994
force field [3], as found in the Amber 9 distribution. This file should generally be left unchanged,
unless a newer version of the atom types/charges (e.g., the Amber 2002 force field) is desired. If
a new version of the amino acid parameters is incorporated instead, the new all amino94.in file
must have the same format as the current version.

The all aminont94.in and all aminoct94.in files contain, respectively, the NH3+ and COO-
amino acid atom force field types and charges. These files have the same format as the all amino94.in
file and are virtually the same (with some minor modifications) as the corresponding files from the
Amber 9 distribution.

The all nuc94 and gr.in file

The all nuc94 and gr.in file contains the force field atom types and charges, as well as the atom
connectivity information, for: (1) nucleic acids and (2) any general compounds. The nucleic acid
parameters are the same as the parameters in the all nuc94.in file from the Amber 1994 force
field [3], as found in the Amber 9 distribution. The force field parameters for general compounds
can be derived using the Antechamber program [20] and added to the all nuc94 and gr.in. Next,
we give an example of how to compute and add force field parameters for a general compound as
part of the OSPREY input parameter files.

Example: adding force field parameters

Here, we give an example of how to add force field parameters to the OSPREY input parameter
files (parm96a.dat and all nuc94 and gr.in) in the cases when certain parameters are missing. Let
us have a small molecule ligand with three-letter name ’FCL’ that differs from Phe in that chlorine
is added to the para ring position (Fig. 4.1). FCL is not a natural amino acid, and force field
parameters for this small molecule are not found in any of the OSPREY input files. We thus need
to generate all necessary force field parameters and add them to the OSPREY input files. To do
this, we will use the Antechamber program from the Amber 9 distribution since Antechamber
can generate force field parameters in the exact format required by OSPREY.

Assuming the structure of FCL is found in fcl.pdb (and there is nothing else in this pdb file),
Antechamber can be run using the following command:

antechamber -i fcl.pdb -fi pdb -o fcl.prepi -fo prepi -c bcc -at amber

This generates many files, but the only output file that we need is fcl.prepi which contains the
atom types and charges for the FCL molecule. Since Antechamber was called with -fo prepi
and -at amber, the fcl.prepi file is in the correct format for input into OSPREY. The contents
of the fcl.prepi may look like Fig. 4.2. All lines from fcl.prepi, between This is a remark line
and DONE (inclusive) must be added between the last DONE line and the STOP line in the
all nuc94 and gr.in file. This will allow OSPREY to read in the force field parameters for the FCL
molecule.
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Figure 4.1: A schematic of the FCL molecule.
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0 0 2

This is a remark line
molecule.res
FCL INT 0
CORRECT OMIT DU BEG
0.0000
1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000
2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000
3 DUMM DU M 2 1 0 1.522 111.1 .0 .00000
4 O O2 M 3 2 1 1.540 111.208 180.000 -0.70919
5 C C M 4 3 2 1.250 25.416 -155.202 0.93765
6 OXT O2 E 5 4 3 1.250 124.369 -68.343 -0.80178
7 CA CT M 5 4 3 1.521 118.862 111.241 -0.07264
8 N N3 3 7 5 4 1.487 109.136 -158.208 -0.82993
9 H1 H E 8 7 5 1.070 109.492 179.981 0.41914
10 H2 H E 8 7 5 1.070 109.510 60.002 0.42834
11 H3 H E 8 7 5 1.070 109.521 -60.023 0.48650
12 HA HP E 7 5 4 1.100 109.118 82.072 0.08888
13 CB CT M 7 5 4 1.528 110.798 -36.499 -0.05260
14 HB2 HC E 13 7 5 1.100 108.981 -67.828 0.06449
15 HB3 HC E 13 7 5 1.100 108.985 48.654 0.12875
16 CG CA M 13 7 5 1.497 113.679 170.400 -0.11169
17 CD1 CA M 16 13 7 1.396 120.643 -54.259 -0.12508
18 HD1 HA E 17 16 13 1.100 119.589 0.946 0.14651
19 CE1 CA M 17 16 13 1.399 120.862 -179.043 -0.11974
20 HE1 HA E 19 17 16 1.101 120.141 179.898 0.15325
21 CZ CA M 19 17 16 1.393 119.721 -0.086 0.01562
22 Cl1 Cl E 21 19 17 1.770 120.084 -179.920 -0.08313
23 CE2 CA M 21 19 17 1.399 119.809 0.048 -0.12119
24 HE2 HA E 23 21 19 1.100 120.030 179.988 0.15163
25 CD2 CA M 23 21 19 1.396 119.925 -0.051 -0.13198
26 HD2 HA E 25 23 21 1.100 119.613 -179.907 0.13819

LOOP
CD2 CG

IMPROPER
CA O C OXT
CD1 CD2 CG CB
CG CE1 CD1 HD1
CD1 CZ CE1 HE1
CE1 CE2 CZ Cl1
CZ CD2 CE2 HE2
CG CE2 CD2 HD2

DONE
STOP

Figure 4.2: The fcl.prepi file.
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As is the case in this example, adding new parameters to all nuc94 and gr.in may also require
adding new parameters to parm96a.dat. FCL has a chlorine atom, Cl. The atom type Cl is not
available in the original parm96a.dat, and neither are any of the force field parameters related to
this atom type. To obtain these parameters, the parmchk command from the Amber distribution
can be called:

parmchk -i fcl.prepi -fi prepi -o fcl.frcmod

This should generate the different force field parameters for the atom types from the fcl.prepi
file, and output these parameters to the fcl.frcmod file. In the current example, it is sufficient to
add two lines to parm96a.dat. First, add the line

Cl 35.450 same as cl, antechamber

to the group of atom types and mass parameters at the beginning of parm96a.dat, immediately
after the line

Cs 132.91 cesium

Next, add the line

Cl 1.9480 0.2650 same as cl, antechamber

to the group of vdW parameters at the end of parm96a.dat, immediately after the line

IB 5.0 0.1 solvated ion for vacuum approximation

In some cases, it may also be necessary to add a subset of the dihedral parameters from
fcl.frcmod to parm96a.dat. This will happen if an atom whose atom type is not available in
the original parm96a.dat is also part of a dihedral whose two central atoms define a rotatable
bond, as determined by the rotamers for the given molecule (see Sec. 4.2).

The eef1parm.dat file

The eef1parm.dat file contains solvation energy parameters for different force field atom types,
as described in [13]. The mapping between amino acid atom names and force field atom types
is done in the EEF1.java class, so any changes to the eef1parm.dat file should also be reflected
in EEF1.java. The eef1parm.dat file only contains parameters for proteins (e.g., there are no
parameters for phosphorus); cofactors and ligands that are not natural amino acids are not included
in the solvation energy computation.

User control of the energy function

The user is also allowed to change certain energy function parameters, such as the value of the
dielectric constant and the scaling factor for the vdW radii of the atoms, from the KStar.cfg
configuration file. For details, see Sec. 3.2.1.
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Chapter 5

OSPREY Commands

We will assume that the mpirun command (Sec. 3.2) has been executed and OSPREY is waiting
for the user to execute one of the available commands. The OSPREY commands can be divided
into three general algorithmic modules, each described in a separate section of this documentation.

Redesign can be performed using a GMEC-based approach in which candidate protein mutants
are ranked based on the single best conformation (the Global Minimum Energy Conformation,
GMEC) for each candidate mutant. The OSPREY GMEC-based redesign approach utilizes a
number of Dead-End Elimination (DEE) algorithms combined with the A∗ search algorithm for
solving protein redesign problems. GMEC-based redesign with OSPREY is described in Sec. 5.1.

Alternatively, redesign can be performed using an ensemble-based approach in which candidate
mutants are ranked based on an ensemble of low-energy conformations, rather than just the GMEC.
The OSPREY ensemble-based approach utilizes the K∗ algorithm for protein-ligand binding pre-
diction and protein redesign. Redesign with K∗ is described in Sec. 5.2.

Finally, OSPREY allows the user to use a Self-Consistent Mean Field (SCMF)-based algorithm
for computing residue entropies for all residue positions in a protein. This algorithm can be used
in combination with a DEE-based algorithm to predict mutations anywhere in a protein. Such
a hybrid SCMF/DEE approach is applicable to, e.g., enzyme redesign for improving the target
substrate specificity of the mutant enzymes. The SCMF computation in OSPREY is described in
Sec. 5.3.

Once the execution of a OSPREY command completes, OSPREY exits. If more OSPREY
commands must be executed, the mpirun command must be executed again, followed by the
desired OSPREY command.

NOTE: The mpirun and the OSPREY commands need not be executed sequentially; rather,
these commands can be executed as a single command. For example, the doDEE command (de-
scribed in Sec. 5.1) can be executed in the following way:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg doDEE
System.cfg DEE.cfg

With this single command, the standard output from OSPREY can be redirected to a file for
analysis. For example, assuming tcsh is used:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg doDEE
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System.cfg DEE.cfg >! logDEE.out

This command will generate a file logDEE.out that will store all standard output from the
OSPREY run. This way, some advanced information (such as rotamer pruning and detailed running
times) that is typically not generated as part of the standard OSPREY output files, will be available
for analysis by the user. NOTE: For some problems, the standard output from a OSPREY run
may generate very large files (sometimes, though rarely, exceeding 1GB), so the user should make
sure that there is sufficient space in the target location.
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5.1 GMEC-based Redesign

The GMEC-based redesign uses DEE-based rotamer pruning and A∗ conformation enumeration.
The DEE pruning stage can incorporate continuously-flexible rotamers (the MinDEE algorithm [10])
or continuous (the BD algorithm [7]) or discrete (the Brdee algorithm [8]) protein backbones. Tra-
ditional DEE pruning [6, 18] for a rigid backbone and rigid rotamers can also be performed.

In a GMEC-based redesign, mutation sequences are ranked according to the single lowest-energy
rotamer-based conformation for each sequence. Typically, either only the overall GMEC (over all
mutation sequences) is identified, or a gap-free list of conformations and sequences is generated, such
that all conformations/sequences within a user-specified energy window from the GMEC energy
are generated by the A∗ enumeration [10].

A GMEC-based mutation search can be performed by OSPREY using the following command:

doDEE System.cfg DEE.cfg

The System.cfg and DEE.cfg configuration files are described in detail below (Sec. 5.1.1). The
names of the two configuration files specified after the doDEE command can be chosen by the user;
for clarity, we will refer to these files as System.cfg and DEE.cfg throughout this documentation.
The output of the doDEE command is also described below (Sec. 5.1.2).

Once the doDEE command completes its execution, the user will have a list of low-energy
conformations and sequences. PDB structures for selected conformations can then be generated
using the following command:

genStructDEE System.cfg GenStruct.cfg

The System.cfg configuration file is the same as with the doDEE command. The GenStruct.cfg
file (or the corresponding user-specified filename) is described in detail in Sec. 5.1.1 below. The
output of the genStructDEE command is described in Sec. 5.1.2 below. The genStructDEE
command is executed on a single processor.

The GMEC-based mutation search can be applied with or without the DACS (Divide-And-
Conquer Splitting) algorithm [9]. DACS divides the conformation space into non-overlapping par-
titions and uses partition-specific information to efficiently generate the GMEC for each partition.
The partition GMEC’s are then used to obtain the overall GMEC, for the full conformation space.
DACS was found to result in speedups of up to more than three orders of magnitude when compared
to DEE/A∗ runs without DACS [9]. DACS can be performed on a single processor or on a (large)
cluster of processors. Generally, the user can adapt the DACS partitioning scheme depending on
the redesign problem and the availability of computational resources.

5.1.1 Configuration Files

System.cfg

This configuration file contains the information about the system (protein) being redesigned. A
typical file looks like this:

pdbName 1amu_8A_lig.pdb
numInAS 7
residueMap 236 239 278 299 301 322 330
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pdbLigNum 550
ligAA true
numCofRes 1
cofMap 551

A description of the parameters is as follows:

pdbName

The name of the input pdb file of the design system. This should be the file modified
by the user according to the instructions for making the input structure compatible with
OSPREY, as described in Sec. 4.1.

numInAS

The number of residues modeled as flexible using rotamers and (possibly) allowed to
mutate; for protein-ligand binding, this is the number of residues in the active site of the
protein.

residueMap

The residue numbers of the flexible residues in the input pdb file. The total number of
residue numbers must be the same as the numInAS value.

pdbLigNum

The residue number of the ligand in the input pdb file; -1 if no ligand.

ligAA

Is the ligand (if present) a natural amino acid (set this parameter to true) or some other
small molecule (set to false)?

numCofRes

The number of cofactor residues; 0 if no cofactor. A cofactor ’residue’ can in fact also
be a DNA base, a water molecule, or some small molecule. Cofactor residues need not be
bonded to each other.

cofMap

The residue number(s) of the cofactor in the input pdb file. The total number of residue
numbers must be the same as the numCofRes value.

DEE.cfg

This configuration file contains the information about the DEE/A∗ mutation search parameters.
A typical file looks like this:

runName runInfo.out
numMaxMut 7
algOption 3
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doDACS true
splitFlags true
distrDACS false
doMinimize false
minimizeBB false
doBackrubs false
backrubFile none
minEnergyMatrixName 1amuArgNMPEMmin
maxEnergyMatrixName none
useEref true
initEw 2.0
pruningE 100.0
stericE 30.0
approxMinGMEC false
lambda 10000.0
preprocPairs true
pairSt 100.0
scaleInt false
maxIntScale 0.1
minRatioDiff 0.15
initDepth 1
subDepth 1
diffFact 6
genInteractionGraph false
distCutoff 10000.0
eInteractionCutoff 0.0
outputConfInfo c_1amu_
outputPruneInfo p_1amu_
ligPresent true
ligType arg
addWT true
resAllowed0 gly ala val leu ile tyr phe trp met
resAllowed1 gly ala val leu ile tyr phe trp met ser thr hip asn gln lys arg asp glu
resAllowed2 gly ala val leu ile tyr phe trp met ser thr hip asn gln lys arg asp glu
resAllowed3 gly ala val leu ile tyr phe trp met ser thr hip asn gln lys arg asp glu
resAllowed4 gly ala cys
resAllowed5 gly ala val leu ile tyr phe trp met
resAllowed6 gly ala val leu ile tyr phe trp met
resumeSearch false
resumeFilename runInfo.out.partial

A description of the parameters is as follows:

runName

The file in which partial results are stored. The format of this file is described in detail
in Sec. 5.1.2.
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numMaxMut

The maximum number of mutations from the wildtype, such that any solution generated
by the algorithm will contain not more than numMaxMut mutations.

algOption

Determines the types of DEE criteria applied: 2-split positions DEE is used for algOption>=2,
while DEE pairs pruning is applied for algOption>=3. The other DEE criteria (Bounds,
simple Goldstein, 1-split position DEE) are used for any value of algOption. See [9] for a
review of the different DEE pruning criteria.

doDACS

Determines if the algorithms should use DACS or not. If false, then DACS is not per-
formed after the initial DEE pruning and the program directly proceeds to a single-processor
A∗ conformation enumeration; otherwise, DACS splitting is performed.

splitFlags

Is the split-flags technique used (see [9] for a review of this pruning algorithm)?

distrDACS

Will the DACS run be distributed? If true, then each DACS partition is distributed to
a separate processor for evaluation. If there are more partitions than processors, a queue is
formed and the distribution continues until there are no remaining partitions in the queue.
If distrDACS is false, the DACS partitions are evaluated sequentially on a single processor.

doMinimize

Determines if energy minimization is to be performed; true if energy minimization is
performed (for Brdee, BD, MinDEE); false otherwise (for traditional DEE).

minimizeBB

Determines if backbone energy minimization is to be performed; true if backbone en-
ergy minimization is performed (for BD and Brdee); false otherwise (for MinDEE). This
parameter is taken into account only if doMinimize is true.

doBackrubs

Determines if backrubs are to be performed; true if backrubs are performed (for Brdee);
false otherwise (for BD). This parameter is taken into account only if minimizeBB is true.

backrubFile

The input file that contains the precomputed allowed backrub sets (this is the output
file from the precomputeBackrubs command described in Sec. 5.1.3). This parameter is
taken into account only if doBackrubs is true.

minEnergyMatrixName/maxEnergyMatrixName
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The precomputed lower-/upper-bound pairwise energy matrix file names. For tradi-
tional DEE, where no minimization is performed, only the min matrix is computed and
stored. These matrices are described in detail in Sec. 5.1.2.

useEref

Determines if amino acid reference energies are used as part of the energy function. The
amino acid reference energies are computed using the lowest computed intra-rotamer energy
for each amino acid type among all flexible residue positions (similarly to [16]).

initEw

The Ew value [10] used to guarantee that no conformations having an energy within Ew
of the energy of the GMEC are pruned by the DEE algorithms. The value of initEw is also
used as a halting condition to determine the set of conformations generated by A∗. If initEw
is set to zero, then the only conformation that is guaranteed not to be pruned is the GMEC.
Larger values of initEw can generate a gap-free list of multiple low-energy conformations
and mutation sequences.

pruningE

Conformations with an energy lower bound greater than this value are pruned. This pa-
rameter is used by the MinBounds algorithm [9]. A value for this parameter can be generated
using the doSinglePartFn command (Sec. 5.2) and setting pruningE to be the energy of
the lowest-energy conformation for the wildtype protein sequence. If the value of pruningE
is not obtained through doSinglePartFn, then pruningE can be conservatively set to a rea-
sonably large value (e.g., 50-100 kcal/mol), so that conformations with high energy bounds
are pruned.

stericE

Rotamers with intra-rotamer plus rotamer-to-template energy greater than this thresh-
old are pruned as a preprocessing step.

approxMinGMEC

Determines if the heuristic halting condition for the DEE/A∗ computation should be
used (see [1, Supporting Information, Sec. S1.2.3]); true if the heuristic halting condition is
used; false if the provable halting condition (see [10, Proposition 2]) is used. The heuristic
halting condition is useful for DEE algorithms that use minimization (MinDEE, BD, and
Brdee), since these algorithms require the A∗ enumeration of a significantly larger number
of conformations before the mutation search can be provably halted.

lambda

The cutoff for the heuristic halting condition; lambda is only used if approxMinG-
MEC is true. Let bm be the computed lower bound on the conformational energy of the
first rotameric conformation generated by A∗, and let bc be the computed lower bound on the
conformational energy of the current rotameric conformation generated by A∗. The DEE/A∗

search can then be halted when bc > bm + λ.
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preprocPairs

Determines if rotamer pairs should be pruned based on a steric energy threshold: true
if rotamer pairs should be pruned based on a steric energy threshold; false otherwise.

pairSt

If preprocPairs is true, rotamer pairs with interaction energy greater than this thresh-
old are pruned as a preprocessing step. This parameter is analogous to the stericE parameter
for single rotamers.

scaleInt

This parameter scales down the E� pairwise energy interval terms (see [7, Eq. 9]) to
allow for additional rotamer pruning. It is recommended to keep this parameter set to false
since the effects of applying interval scaling are not yet fully evaluated.

maxIntScale

The maximum scaling factor (0-1) for the interval terms (if scaleInt is true). The value
of this scaling factor decreases as a function of the distance between the respective residue
positions involved for each interval term.

minRatioDiff

This is a parameter that is used for choosing a major split position for the DACS
algorithm, in combination with the original p-ratio approach. The higher the value, the more
favored lower-numbered residue positions are (see [9] for details). Faster run times were
achieved with a value of 0.15 as compared to a value of 0.0, although optimization of this
parameter has not been attempted.

initDepth

This parameter is only used if distrDACS is true. initDepth determines the number
of major splitting positions for the DACS algorithm. DACS partitions are formed by enu-
merating all combinations of unpruned rotamers for each residue position (each combination
is given by a single rotamer choice for each residue position). For example, if initDepth is 2
and each of the two selected major split positions has q rotamers, then there will be q2 DACS
partitions. Each partition is then distributed to a separate processor for evaluation. Harder
problems may require larger values of initDepth (depending on the processor availability).
However, if the value of initDepth is too large (e.g., close to numInAS, the total number
of flexible residue positions), the partition enumeration may come at a significant additional
computational cost. The initDepth partitioning will be referred to as major partitioning.

subDepth

This parameter is used when doDACS is true and (1) distrDACS is false, or (2) dis-
trDACS is true and the current major partition has already been distributed for computation
to a given processor. The value of subDepth gives the number of (additional) minor splitting
positions. Partitions (rotamer combinations) are formed the same way as with initDepth.
The difference from initDepth is that the newly-formed partitions are evaluated sequentially
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on the current processor, and not distributed to separate processors. If the sum of initDepth
and subDepth is too large (e.g., close to numInAS), the partition enumeration may come
at a significant additional computational cost. The subDepth partitioning will be referred
to as sub-partitioning.

diffFact

Consider a given major partition for evaluation (or the single initial partition, if dis-
trDACS is false). Also, note that sub-partitioning is implemented as a recursive procedure
in OSPREY. Let i < subDepth be the current residue position, such that the current sub-
partition (combination of rotamers) is only assigned for i of the minor splitting positions.
If the total number of remaining unpruned conformations for the current partially-assigned
partition is not more than 10diffFact, then the sub-partitioning is stopped and A∗ enumera-
tion for the current partially-assigned partition is executed. Otherwise, the sub-partitioning
is continued until either the diffFact stopping condition is reached, or all minor splitting
positions are assigned, at which point the A∗ enumeration is executed.

genInteractionGraph, distCutoff, eInteractionCutoff

The genInteractionGraph parameter must be set to false. genInteractionGraph,
distCutoff, and eInteractionCutoff are used for residue interaction graph generation,
rather than conformation/sequence generation, and are thus not applicable here.

outputConfInfo

The output file name that will store information about the best-energy conformations
found. If distrDACS is true, a directory named conf info must exist in the source code
directory, since this is where the output files will be stored. These output files are discussed
in detail in Sec. 5.1.2.

outputPruneInfo

The output file name that will store information about the pruning done. If distrDACS
is true, a directory named conf info must exist in the source code directory, since this is where
the output files will be stored. These output files are discussed in detail in Sec. 5.1.2.

ligPresent

Will the ligand (if at all present in the input pdb structure) be used in the DEE/A∗

search: true, if the ligand is present and will be used; false otherwise. Note that this param-
eter has a different meaning from the pdbLigNum in the System.cfg file. pdbLigNum
determines if a ligand is present in the input structure (and if so, what the corresponding
pdb residue number is). However, if pdbLigNum is true but ligPresent is false, the ligand
will be removed from the structure and will not be used in the DEE/A∗ conformation search
(i.e., only the protein and the cofactor, if present, will be evaluated).

ligType

The type of the ligand, if ligPresent is true (anything otherwise).

addWT

30



Determines if the redesign positions should be allowed to keep their wildtype identity,
in addition to allowing them to mutate to the amino acid types in resAllowedi (see below).

resAllowedi

What amino acid types are allowed for the i-th flexible residue (numbered from 0, 1,
..., numInAS)? Use standard three-letter amino acid codes separated by a single space. If
for a given residue position j, only the wildtype should be allowed, set addWT to true, and
leave resAllowedj empty (however, a single empty space must still be present immediately
after resAllowedj).

resumeSearch

Is the current run an unfinished search, so that the resume files must be loaded? This
is used only to resume a distributed DACS run, so that the completed partitions will not have
to be computed again. The resume capability is discussed in detail in Sec. 5.1.2.

resumeFileName

What file contains the resume information?

GenStruct.cfg

This configuration file contains the information about the structure generation parameters. A
typical file looks like this:

confResFile conf_info.sel
numResults 5
outputPDBs true
doMinimize false
minimizeBB false
doBackrubs false
backrubFile none
ligPresent true
ligType arg

The following parameters must have the same value as the respective parameters in the DEE.cfg
file:

doMinimize
minimizeBB
doBackrubs
backrubFile
ligPresent
ligType

The remaining parameters are described as follows:
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confResFile

The file that contains the input information, one conformation per line. This file is
obtained from the output of the doDEE command. The format of this file is described in
detail in Sec. 5.1.2.

numResults

The number of lines in the confResFile file.

outputPDBs

Determines if pdb structures will be generated for each conformation from the con-
fResFile file. This parameter should be set to true.

5.1.2 Output Files

Pairwise Energy Matrices

The doDEE command first computes a lower-bound and an upper-bound pairwise energy matrix
(in the case of MinDEE, BD, and Brdee) or a single matrix (in the case of traditional DEE).
These matrices contain the computed interaction energies for the protein template (the protein
backbone and the side-chains not modeled as flexible), between each rotamer for each residue
position and the protein template, and between each pair of rotamers for the different pairs of
residue positions. Only the energies for the amino acid types (and the corresponding rotamers)
specified by the resAllowedi parameters are computed. For example, in the DEE.cfg sample file
shown in Sec. 5.1.1, resAllowed4 has gly ala cys as the allowed amino acid types (we will assume
that the wildtype identity at that residue position is Ala). In that case, energies involving, e.g.,
Leu rotamers at that residue position will not be computed.

In the case of MinDEE, BD, and Brdee, energy minimization (either rotamer or backbone) is
allowed. As a result, the energies between rotamer pairs (and between rotamers and the protein
template) are not rigid and will depend on the rotamer identities and conformation of the surround-
ing residues (see [10, Fig. 2]). If the energy minimization of the rotamers or the protein backbone is
restrained (by, e.g., restraints on the side-chain dihedral movement), then both a lower-bound and
an upper-bound for each pairwise energy can be computed within the specified restraints. Hence,
the computed lower/upper energy bounds are saved into two matrices. These matrices are saved
as binary files, as specified by the minEnergyMatrixName/maxEnergyMatrixName param-
eters in the DEE.cfg file. The two energy matrices are used by MinDEE, BD, and Brdee during
the respective DEE pruning stage. The lower-bound matrix is further used during the A∗ enumera-
tion stage to generate conformations in order of increasing lower bounds on their energies [10]. For
traditional DEE, a single matrix (specified by the minEnergyMatrixName parameter) is com-
puted and saved since energy minimization is not allowed. Once the energy matrices are computed,
doDEE can read them in every time the DEE/A∗ search is restarted, and the computation of these
matrices need not be repeated, as long as the input structure and allowed mutations (specified by
the resAllowedi parameters) remain unchanged.
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Mutation Search Results

After the computation of the pairwise energy matrices is done, the program moves to the DEE
pruning stage, followed by the A∗ enumeration stage. If the DACS algorithm is applied (doDACS
in DEE.cfg is set to true), DEE pruning is first applied for the entire conformation space, until no
more dead-ending rotamers/pairs can be identified. The pruning and enumeration stages are then
applied separately for each of the DACS partitions. Depending on whether DACS is applied and
whether DACS is performed as a distributed run, different files are generated during the mutation
search.

Mutation search on a single processor (with or without DACS)

Conformation File. Two different types of mutation search are discussed here: DEE/A∗ without
DACS (doDACS is false), and DACS on a single processor (doDACS is true and distrDACS is
false). In these cases, one conformation output file, specified by the outputConfInfo parameter in
DEE.cfg is generated during the mutation search. This file contains all conformations generated
by A∗ and within the specified energy window (the initEw parameter) from the energy of the
respective GMEC. NOTE: No structures are saved during this part of the program execution;
rather, only the conformation data necessary to generate the structures is saved, along with the
respective computed conformational energies.

Each line in the conformation file corresponds to a single rotamer-based conformation generated
by A∗. The format of each line is as follows:

c a1 a2 . . .an aL r1 r2 . . . rn rL unMinE: eu minE: em minBound: emb bestE: eb

Here, c is the conformation number, in the order generated by A∗; if DACS is applied, con-
formation numbers are partition-specific, so there might be multiple conformations with the same
conformation number (but that are part of different partitions). ak is the corresponding three-letter
amino acid name for the kth of the total of n (where n = numInAS) flexible residue positions; aL

is the three-letter name of the ligand (if present). Similarly, rk is the corresponding rotamer num-
ber for the kth flexible residue position; rL is the rotamer number of the ligand (if present). A
rotamer number is determined based on the index (starting from 0) of the given rotamer for the
given amino acid into the input rotamer library. For example, rotamer 3 of Leu corresponds to χ
angles −85 65 in the LovellRotamer.dat rotamer library (see Sec. 4.2). The value eu represents the
conformational energy before minimization (the energy of the conformation for a rigid backbone
and rigid rotamers). The value em represents the conformational energy after the respective type
of minimization (backbone or side-chain); if no minimization is allowed, em = eu. ‘minBound: emb’
is only present in the output if energy minimization is allowed and represents the computed lower
energy bound for the current conformation; this lower energy bound is used by A∗ for enumerating
conformations in order. The value eb is the best (lowest) conformational energy found in the A∗

search so far. An example (partial) outputConfInfo file (for seven flexible residue positions, an
Arg ligand, single-processor DACS, and no minimization) may look like this (lines are wrapped):

1 MET GLY ASP ARG ALA ALA MET ARG 6 0 2 18 0 0 9 31 unMinE: -273.75903 minE:
-273.75903 bestE: -273.75903

2 MET GLY ASP MET ALA ALA MET ARG 6 0 2 6 0 0 9 31 unMinE: -271.96558 minE:
-271.96558 bestE: -273.75903

3 MET GLY ASP ARG ALA ALA GLY ARG 6 0 2 18 0 0 0 31 unMinE: -271.7832 minE:

33



-271.7832 bestE: -273.75903
1 MET ASP SER ARG GLY ALA VAL ARG 6 3 2 18 0 0 1 29 unMinE: -276.5042 minE:

-276.5042 bestE: -276.5042
2 MET ASP SER ARG GLY ALA VAL ARG 6 3 1 18 0 0 1 29 unMinE: -276.4287 minE:

-276.4287 bestE: -276.5042

NOTE: In some cases, the conformations stored in the outputConfInfo file can be a superset
of the conformations actually within initEw of the GMEC:

• If energy minimization is allowed (i.e., MinDEE, BD, or Brdee), the set of A∗-generated con-
formations may be significantly larger than the set of conformations actually within initEw
from the GMEC. This is due to the fact that, in the cases with energy minimization, A∗ enu-
merates conformations in order of increasing lower bounds on their energies. However, since
different conformations can minimize differently, the order of the lower energy bounds is not
necessarily the same as the order of the conformations when the actual minimized energies
are taken into account [10].

• If DACS is used, then additional conformations whose energy lower bounds are within initEw
of the partition-specific GMEC (but not necessarily of the overall GMEC) may also be gen-
erated and stored.

NOTE: If approxMinGMEC in DEE.cfg is set to false, then only the conformations with
actual energies within initEw of the GMEC (or the partition-specific GMEC) are stored, although a
larger number of conformations may be generated by A∗. If approxMinGMEC is set to true, then
all conformations generated by A∗ are stored, independent of the actual energies. Since approx-
MinGMEC is also used as a heuristic halting condition for the DEE/A∗ search (see Sec. 5.1.1),
requiring both that all A∗-generated conformations be saved and the provable halting condition be
used, will also require that the lambda parameter in DEE.cfg be set to some very large value
(e.g., 10000000).

After the mutation search is complete, the conformations in the outputConfInfo file can be
sorted in order of their em (minimized) energies. The conformation with the lowest em energy will
be the respective GMEC for the given problem. All (or a subset of the) conformations within
initEw of the GMEC energy can then be extracted for further analysis and structure generation
(see below).

Pruning File. In addition to the outputConfInfo conformation file, a single-processor DACS
run outputs an outputPruneInfo pruning information file. The outputPruneInfo file stores
information about the partition-specific conformation pruning achieved by DACS. This file is useful
for comparing the pruning efficiency of different algorithms, as described in [9]. The information
in this file is, however, not directly related to conformation and mutation scoring and ranking.

Mutation search with distributed DACS
When distributed DACS is performed (doDACS and distrDACS are true), one conformation

file and one pruning information file are stored for each partition that is evaluated on a separate
processor. For each partition, these two files are saved in a directory named conf info; the names of
each such pair of files are obtained by concatenating, respectively, the outputConfInfo and out-
putPruneInfo values with a unique partition-specific index. The format of the outputConfInfo
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and outputPruneInfo files is the same as with the single-processor mutation search described
above. When the computation for all partitions is done, all of the outputConfInfo files can be
concatenated and the conformations can be sorted in order of increasing em energy. The confor-
mation with the lowest em energy will be the respective GMEC for the given problem. All (or a
subset of the) conformations within initEw of the GMEC energy can then be extracted for further
analysis and structure generation (see below).

NOTE: One temporary file (filename rot outXXX, where XXX is an index unique to each
program execution) that is used for communication between the main node and the work nodes
is also output just before the start of the partition distribution. This file is automatically deleted
when the computation for all partitions is completed.

NOTE: A secondary thread is run throughout the mutation search to allow communication
between partitions. This allows updating all partitions when a new best energy is found by one
of these partitions. This way, partitions with high-energy partition-specific GMEC’s can provably
halt the computation before enumerating all conformations within initEw of the partition-specific
GMEC. For efficiency, the secondary thread is only run every few minutes, so the updates to the
different partitions can be delayed.

Resuming a mutation search. When distributed DACS is performed, an interrupted mutation
search can be resumed, so that only partitions for which the computation did not complete are re-
distributed for evaluation. When a processor completes the computation for a given partition, the
partition information is output to the file specified by the runName parameter in the DEE.cfg
file. If a mutation search is interrupted (e.g., if some work nodes crash) before the completion of
the computation for all partitions, the partial results in the runName file can be copied over to
the file specified by the resumeFileName parameter in DEE.cfg. The outputConfInfo and
outputPruneInfo files in the conf info directory must be moved to a backup directory. The
resumeSearch parameter in DEE.cfg should then be set to true, and the doDEE command
should be executed again. The distributed DACS computation then reads in the already-computed
partitions from the resumeFileName file, and restarts the computation only for the remaining
partitions. When the computation for all of the partitions is done, the outputConfInfo and
outputPruneInfo files generated after the resume (these will all be in the conf info directory)
must be moved to the backup directory where all outputConfInfo and outputPruneInfo files
before the resume were stored. This copy should overwrite all partial files in the backup directory
(corresponding to partitions for which the computation started but did not complete before the
resume) with the corresponding complete files. The outputConfInfo and outputPruneInfo
files already completed before the resume will not be modified since each partition corresponds
to files with unique filenames that are independent of whether, and how many times, the search
is resumed (as long as the search parameters remain unchanged). Finally, all of the completed
outputConfInfo files should be concatenated, and the conformations should be sorted and ranked
according to their em energy.

Structure Generation

The computed structures for each of the total of numResults conformations from the input con-
fResFile file (both parameters are from GenStruct.cfg) are output to a directory named pdbs.
The filename of each structure is a concatenation of saveMol and the line number of the corre-
sponding conformation in the input confResFile file. NOTE: Each of the generated structures
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contains a REMARK 7 line that gives the computed (minimized) energy for that structure. How-
ever, this energy does not include amino acid reference energies. This energy may thus differ from
the energy output to the corresponding outputConfInfo file if the useEref flag is set to true
during the doDEE execution.

5.1.3 Performing Backrubs

To perform a mutation search using backrubs, an additional OSPREY command must be executed
before the execution of doDEE in order to generate a list of allowed backrubs for the selected
flexible residue positions. The list of backrubs can be generated with the following command:

precomputeBackrubs System.cfg n s br.in

The System.cfg file is as described in Sec. 5.1.1 and must have the same parameter values as
in the subsequent doDEE call. The number n determines the number of backrub steps in each
direction for the primary rotation of each flexible residue (see [8]). The number s determines the
backrub step size. The last argument (in this example, br.in) determines which file will store the
computed list of backrubs. This file will be used as input for the doDEE execution and must thus
have the same filename as the backrubFile parameter in DEE.cfg (see Sec. 5.1.1). An example
call to precomputeBackrubs is as follows:

precomputeBackrubs System.cfg 2 4.0 br.in

In this example, a list of 5 primary backrub rotations will be generated for each flexible residue,
with values −8.0, −4.0, 0.0, 4.0, and 8.0 degrees. The backrub generation algorithm then computes
the two peptide rotations for each primary rotation using the approach described in [8]. Finally, a
steric and τ -angle filter is applied to prune sets of the candidate backrubs [8]. Backrubs that pass
the pruning filters are output to the file specified by the last argument in the precomputeBackrubs
call. The format of that file is as follows. The first line in that file contains two numbers: (1) the
number of flexible residue positions (equal to the value of the numInAS parameter in System.cfg),
and (2) the number of backrubs per residue position (equal to 2 × n + 1, where n is the second
argument in the precomputeBackrubs call). Each of the remaining lines corresponds to a single
combination of primary and flanking backrub rotation angles for each residue position (there can
be multiple backrub combinations per residue position). The format of each of these lines is the
following:

i k θc θl θr

A description of the data is as follows:

• i: the index of the current residue number into the flexible-residue array. For example, if the flexible
residue numbers are 236 239 278 299 301 322 330, then the index of 236 will be 0, while the index
of 322 will be 5. This index is automatically generated by the program and is used when the backrub
file is read by the doDEE command.

• k: the index of the current backrub. This index is generated automatically and has a range 0 . . . 2 ∗n,
where n is the second argument in the precomputeBackrubs call.

• θc: the value of the current primary rotation angle.
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• θl, θr: the values of the left and right flanking rotation angles, respectively. These rotation angles are
computed as a function of the corresponding primary rotation angle.

An example file generated by precomputeBackrubs is shown here:

7 5
0 2 0.0 0.0 0.0
0 3 4.0 -1.3422085 -3.6416507
0 4 8.0 -2.6781783 -7.0035505
1 0 -8.0 2.8148565 7.038195
1 1 -4.0 1.4027587 3.3622477
1 2 0.0 0.0 0.0
2 2 0.0 0.0 0.0
2 3 4.0 -2.3724327 -2.0907638
2 4 8.0 -4.670408 -4.273453
3 1 -4.0 2.5223923 1.8658059
3 2 0.0 0.0 0.0
3 3 4.0 -2.4386685 -1.9066759
3 4 8.0 -4.8066154 -3.8650274
4 0 -8.0 6.8834524 3.2620065
4 1 -4.0 3.4216287 1.630518
4 2 0.0 0.0 0.0
4 3 4.0 -3.3753068 -1.6301426
5 2 0.0 0.0 0.0
5 3 4.0 -2.352193 -2.1507177
5 4 8.0 -4.6454926 -4.3780875
6 2 0.0 0.0 0.0
6 3 4.0 -1.0102168 -3.5866969
6 4 8.0 -1.9774139 -6.9551406

Once the list of backrubs is computed and saved, the doDEE command can be executed.
NOTE: In some cases, the user may decide to manually edit the backrub file. In the example

file above, adding one more backrub with angles 8.0 -10.0 -5.0 for the residue with index 5, requires
that: (1) the first line in the file be changed to ‘7 6’, and (2) the following line be added immediately
after the last line for residue index 5 (starting with ‘5 4’) and before the first line for residue index
6 (starting with ‘6 2’):

5 5 8.0 -10.0 -5.0

NOTE: The second number on the first line in the file must only be increased by the maximum
number of added backrubs for any given residue position. For example, if the user adds 2, 3, 2, 1,
0, 1, and 0 backrubs respectively for the seven flexible residues in the example above, then the first
line in the backrub file must be modified to ‘7 8’.

NOTE: Deleting lines from the backrub file is also allowed, as long as the line in which the
three rotation angles are 0.0 (corresponding to the initial backbone conformation) is kept for each
of the flexible residue positions.

NOTE: The precomputeBackrubs command can also be executed before the KSMaster com-
mand for K∗ redesign (Sec. 5.2) with backrubs.
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5.2 Redesign Using K∗

The K∗ algorithm can be used for protein-ligand binding prediction in protein redesign, with
applications to enzyme redesign and small-molecule inhibitor design. K∗ requires that an initial
structure of the bound protein-ligand complex exists. K∗ differs from typical DEE/A∗ mutation
searches (e.g., see Sec. 5.1) in several ways:

1. K∗ explicitly models the bound protein-ligand complex vs. the unbound (free) protein and
ligand;

2. K∗ computes partition functions over ensembles of conformations. This is in contrast to
GMEC-based algorithms where each mutant is scored and ranked based on the corresponding
single lowest-energy conformation (the GMEC for that mutant);

3. Energy minimization is performed for each of the conformations part of the K∗ ensemble.

K∗ is a provably-accurate algorithm with respect to the input model (the input structure, the
rotamer library, and the energy function) used. Enumerating all conformations for a given protein-
ligand complex is computationally infeasible. K∗ thus computes a provably-accurate approximation
to the binding constant for each candidate protein-ligand complex by evaluating only a very small
portion of candidate low-energy conformations; the contribution of the remaining conformations
is provably guaranteed to be less than the approximation accuracy. The accuracy of the binding
constant approximation is determined by the user. In computational tests, K∗ was shown to be
able to enumerate less than 0.5% of all rotamer-based conformations for a given protein-ligand
complex, while at the same time guaranteeing that the computed partial partition function was at
least 97% of the full partition function (when all rotamer-based conformations are included) [10].
Details of the K∗ algorithm can be found in [10, 1].

The basic flow of the K∗ computation is as follows:

1. First, a set of residue positions in the input structure is selected for mutation. Typically,
these residue positions are part of the protein binding/active site and are in direct contact
with the ligand.

2. A set of allowed amino acid mutations is then selected for each of the mutable residue posi-
tions.

3. Since the K∗ score computation is performed separately for each mutant, it is recommended
that the total number of candidate mutants be limited (currently, up to several tens of thou-
sands of mutants can be evaluated for K∗ in a reasonable time on a large cluster of processors).
This can be achieved by allowing only k-point mutation sequences, such that any k of the
mutable positions are allowed to mutate at the same time, while all remaining mutable posi-
tions are modeled as flexible using rotamers. All combinations of k-point mutation sequences
can be generated by K∗.

4. The list of k-point mutation sequences is then input into the K∗ volume filter, so that under-
and over-packed sequences (relative to the wildtype sequence and wildtype ligand) are pruned.
Only sequences that pass the volume filter are evaluated further.
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5. For each sequence that passes the volume filter, a provably-accurate K∗ approximation score
is computed. For each K∗ score computation, partition functions for the bound protein-
ligand complex and the free protein and free ligand are computed. For the partition function
computation, DEE is applied first as a pre-processing step to prune candidate rotamers (and
hence, conformations), followed by the A∗ search to enumerate an ensemble of low-energy
conformations. For computational efficiency, an inter-mutation pruning filter can be used as
part of K∗, so that the requirement for provable score accuracy is not enforced for low-scoring
sequences (mutation sequences with higher K∗ score are predicted to be better binders).

6. The candidate mutants are then ranked in order of decreasing K∗ scores. A set of high-scoring
mutants (e.g., the top forty mutants) is finally selected for further analysis and (possibly)
structure generation.

A K∗ mutation search can be performed by OSPREY using the following command:

KSMaster System.cfg MutSearch.cfg

The System.cfg configuration file is as described in Sec. 5.1.1. The MutSearch.cfg file is
described in detail below (Sec. 5.2.1). The names of the two configuration files specified after the
KSMaster command can be chosen by the user; for clarity, we will refer to these files as System.cfg
and MutSearch.cfg throughout this documentation. The output of the KSMaster command is also
described below (Sec. 5.2.2).

Once the K∗ score computation is complete, structures for a given mutant can be generated
using the following command:

doSinglePartFn System.cfg SinglePF.cfg

The System.cfg configuration file is the same as with the KSMaster command. The Sin-
glePF.cfg file (or the corresponding user-specified filename) is described in detail in Sec. 5.2.1
below. In effect, the doSinglePartFn command performs a partition function computation (either
for the bound or unbound state) for a given single mutation sequence. The output of the doSin-
glePartFn command is described in Sec. 5.2.2 below. The doSinglePartFn command is executed
on a single processor.

5.2.1 Configuration Files

MutSearch.cfg

runName 1amuArgMutSearch
mutFileName 1amuArg2MUT.mut
numMutations 2
targetVolume 620.0
volumeWindow 40.0
doMinimize true
minimizeBB false
doBackrubs false
backrubFile none
minEnergyMatrixName 1amuArgSCPEMmin
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maxEnergyMatrixName 1amuArgSCPEMmax
initEw 6.0
pruningE 100.0
stericE 30.0
scaleInt false
maxIntScale 1.0
epsilon 0.03
gamma 0.01
repeatSearch true
useUnboundStruct true
unboundPdbName 1amu_8A_lig_UB.pdb
minEnergyMatrixNameUnbound 1amuArgSCPEMminUB
maxEnergyMatrixNameUnbound 1amuArgSCPEMmaxUB
ligPresent true
ligType arg
addWT true
resAllowed0 gly ala val leu ile tyr phe trp met
resAllowed1 gly ala val leu ile tyr phe trp met ser thr hip asn gln lys arg asp glu
resAllowed2 gly ala val leu ile tyr phe trp met ser thr hip asn gln lys arg asp glu
resAllowed3 gly ala val leu ile tyr phe trp met ser thr hip asn gln lys arg asp glu
resAllowed4 gly ala cys
resAllowed5 gly ala val leu ile tyr phe trp met
resAllowed6 gly ala val leu ile tyr phe trp met
resumeSearch false
resumeFileName 1amuArgMutSearch.partial

The following parameters are as described for the DEE.cfg file in Sec. 5.1.1:

doMinimize
minimizeBB
doBackrubs
backrubFile
minEnergyMatrixName
maxEnergyMatrixName
initEw
pruningE
stericE
scaleInt
maxIntScale
ligType
addWT
resAllowed

A description of the remaining parameters is as follows:

runName
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The file in which partial results are stored. The format of this file is described in detail
in Sec. 5.2.2.

mutFileName

The file in which all candidate mutation sequences are stored. If not available, this file
is computed and stored dynamically using the targetVolume, volumeWindow, numMu-
tations, and resAllowedi parameters described below. The format of this file is described
in detail in Sec. 5.2.2.

numMutations

The numMutations parameter is used for generating the mutFileName file; if the
mutFileName file has already been generated, this parameter is ignored. This parameter
determines the maximum number of mutations from the wildtype, such that only up to
numMutations-point sequences are considered. In a k-point mutation search, any k of the
n flexible residue positions are allowed to simultaneously mutate, while the remaining flexible
residue positions are allowed to change their side-chain conformation (but not their amino
acid identity).

targetVolume

The targetVolume parameter is used for generating the mutFileName file; if the
mutFileName file has already been generated, this parameter is ignored. This parameter
determines the target volume for the active site used by the K∗ volume filter (see [10]). This
target volume is computed as the sum of the volumes for the active site residues (taken
from the volFile file specified in KStar.cfg), plus the difference between the volumes for
the wildtype ligand and the target ligand. This parameter can only be used for amino acid
ligands. If the ligand is not a natural amino acid, it is recommended that the volume filter
be switched off (see Sec. 5.2.2 for details).

volumeWindow

The volumeWindow parameter is used for generating the mutFileName file; if the
mutFileName file has already been generated, this parameter is ignored. This parameter is
used by the volume filter to determine which mutation sequences with the target ligand are
under- or over-packed relative to the wildtype sequence/ligand. Only mutation sequences with
volumes within volumeWindow around the targetVolume are kept for further evaluation.
As with targetVolume, this parameter can only be used for amino acid ligands. If the ligand
is not a natural amino acid, it is recommended that the volume filter be switched off (see
Sec. 5.2.2 for details).

epsilon

The K∗ partition function approximation parameter (see [10] for details). This param-
eter guarantees that the computed partial partition functions will be at least (1− ε)q, where
q is the full partition function (when all rotamer-based conformations are considered). The
value of this parameter should be between 0 and 1; for example, a value of 0.03 corresponds
to a ≥ 97% approximation accuracy.
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gamma

The inter-mutation approximation parameter(see [10] for details). This parameter de-
termines for which mutation sequences a provably-accurate approximation should be com-
puted. The value of this parameter should be between 0 and 1. A value of 0 guarantees
an ε-approximation for all candidate sequences; a value of 1 guarantees an ε-approximation
only for the top-scoring (best) sequence; a value of 0.01 guarantees an ε-approximation for
all sequences whose scores are within two orders of magnitude from the top-scoring sequence.
The idea is that, in general, only sequences close to the top sequences will be of interest since
they are predicted to be good binders. A provably-good approximation is thus required for
such sequences. All other sequences are guaranteed to have low scores, so the partition func-
tion/score computation can be halted early, without achieving provable guarantees. NOTE:
The use of the inter-mutation filter can result in a significant speedup. In some cases, how-
ever, provably-accurate approximations may be required even for low-scoring sequences (e.g.,
in negative design where it is important to be able to correctly predict poor interactions); in
such cases, the inter-mutation filter can be turned off by setting the gamma parameter to 0.

repeatSearch

If at the end of the A∗ conformation enumeration for a given partition function com-
putation the ε-approximation cannot be guaranteed, should the pruning/enumeration be
repeated? The computation is repeated at most one (see [10] for details). It is recommended
to keep this parameter set to true.

useUnboundStruct

Determines if a different unbound structure is used for the unbound partition function
computation. By default, K∗ uses the input structure for the bound protein-ligand complex
(specified by the pdbName parameter in the System.cfg file described in Sec. 5.1.1) for both
the bound and unbound (free protein) partition function computation. In the default case,
the unbound (free) protein structure is obtained by simply removing the ligand from the input
structure. This approach is useful if only a bound protein-ligand structure is available. In
cases where a structure of the free protein is also available, that structure can be used for the
unbound partition function computation; the useUnboundStruct parameter should then be
set to true. NOTE: If both the bound and unbound structures are used, the only difference
between these structures should be the conformation of the residues in these structures and
the lack of a ligand in the unbound structure; the two structures must have the same input
residues (e.g., if residue 278 is present in the bound structure, it must also be present in the
unbound structure, and vice versa).

unboundPdbName

The name of the input pdb file for the unbound (free) protein. This should be the file
modified by the user according to the instructions for making the input structure compat-
ible with OSPREY, as described in Sec. 4.1. This parameter is only taken into account if
useUnboundStruct is true.

minEnergyMatrixNameUnbound/maxEnergyMatrixNameUnbound
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The precomputed lower-/upper-bound pairwise energy matrix file names for the un-
bound (free) protein. These matrices are analogous to the minEnergyMatrixName and
maxEnergyMatrixName matrices, which are used for the bound protein-ligand computa-
tion (or for both the bound and unbound computation if unboundPdbName is false). The
minEnergyMatrixNameUnbound and maxEnergyMatrixNameUnbound parameters
are only taken into account if unboundPdbName is true.

resumeSearch

Is the current run an unfinished search, so that the resume files must be loaded and
the completed sequence scores will not have to be computed again. The resume capability is
discussed in detail in Sec. 5.2.2.

resumeFileName

What file contains the resume information?

SinglePF.cfg

doMinimize true
minimizeBB false
doBackrubs false
backrubFile none
minEnergyMatrixName 1amuArgSCPEMmin
maxEnergyMatrixName 1amuArgSCPEMmax
initEw 6.0
pruningE 100.0
stericE 30.0
scaleInt false
maxIntScale 1.0
epsilon 0.03
gamma 0.01
repeatSearch true
resMut ALA TRP ASP ILE GLY ALA ILE
ligPresent true
ligType arg
outputPDBs true
pdbPrefix pdbs/1amuArg_
bestScore 23500089
protPartFn 739352

The following parameters are as described for the MutSearch.cfg file and must have the same
values:

doMinimize
minimizeBB
doBackrubs
backrubFile
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minEnergyMatrixName
maxEnergyMatrixName
initEw
pruningE
stericE
scaleInt
maxIntScale
epsilon
gamma
repeatSearch

A description of the remaining parameters is as follows:

resMut

Determines for which mutation sequence the partition function computation should be
performed. The value of this parameter should be a string of three-letter amino acid codes
that specify the amino acid type for each of the numInAS mutable residue positions (see
Sec. 5.1.1).

ligPresent

Determines if doSinglePartFn will be performed for the bound state partition function
computation (ligPresent is true) or for the unbound state partition function computation
(ligPresent is false).

ligType

The type of the ligand; if ligPresent is true, then ligType must have the same value
as in MutSearch.cfg.

outputPDBs

Determines if pdb structures for the conformations from the computed partition func-
tion ensemble should be generated. Set this parameter to true.

pdbPrefix

The filename prefix of the pdb structures. It is recommended to store these structures
in a separate subfolder since in some cases the number of generated structures can be very
large. This parameter is only taken into account if outputPDBs is true.

bestScore

This parameter is only taken into account for the bound partition function computa-
tion (i.e., when ligPresent is true). The value of this parameter should be obtained from the
InitBest field for the entry corresponding to the current mutation sequence from the run-
Name file specified in MutSearch.cfg (see Sec. 5.1.2 for details). The bestScore parameter
is used to make sure that the partition function ensemble generated by doSinglePartFn will
be the same as the corresponding partition function ensemble generated by KSMaster.
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protPartFn

This parameter is only taken into account for the bound partition function computa-
tion (i.e., when ligPresent is true). The value of this parameter should be obtained from
the Partial q E field for the entry corresponding to the current mutation sequence from the
runName file specified in MutSearch.cfg (see Sec. 5.1.2 for details). The protPartFn
parameter is used to make sure that the partition function ensemble generated by doSin-
glePartFn will be the same as the corresponding partition function ensemble generated by
KSMaster.

5.2.2 Output Files

Pairwise Energy Matrices

The minEnergyMatrixName/maxEnergyMatrixName matrices generated by KSMaster are
as described for the doDEE command (see Sec. 5.1.2). As long as the mutation search parameters
remain invariant, the matrices computed by doDEE may be used in the KSMaster computation,
and vice versa. In addition to the minEnergyMatrixName/maxEnergyMatrixName ma-
trices, if the useUnboundStruct parameter in MutSearch.cfg is set to true, an additional pair
of matrices is generated, as specified by the minEnergyMatrixNameUnbound and maxEn-
ergyMatrixNameUnbound parameters. This pair of matrices have the same format as the
corresponding minEnergyMatrixName/maxEnergyMatrixName matrices. The difference is
that minEnergyMatrixNameUnbound/maxEnergyMatrixNameUnbound are specifically
used for the unbound partition function computation in a K∗ search, based on the unboundPdb-
Name input structure. In that case, minEnergyMatrixName/maxEnergyMatrixName are
only used for the bound partition function computation. If useUnboundStruct is false, then
only the minEnergyMatrixName/maxEnergyMatrixName matrices are computed and used
both for the unbound and bound partition function computation. If doMinimize is false (i.e.,
traditional DEE is used with K∗), then only the minEnergyMatrixName and minEnergyMa-
trixNameUnbound (if useUnboundStruct is true) matrices are computed and used.

Mutation Search Results

After the computation of the pairwise energy matrices is done, the program moves to the mutation
search. The first stage in the K∗ mutation search is the computation of the list of candidate
mutation sequences. The list of candidate mutation sequences is stored in the mutFileName
file specified in MutSearch.cfg. If the mutFileName file exists in the code directory, that file
is read in by K∗ and the program continues to the next stage, the K∗ score computation. If the
mutFileName file does not exist, it is computed by K∗.

The first step in this stage is to read in the volFile file specified in KStar.cfg. This file
contains volume information for each rotamer for each amino acid type other than Pro. If this file
does not exist, it is computed by K∗. The volume computation uses pre-specified atomic radii and
is performed for each rotamer for each amino acid. Each line in the volFile file starts with the
three-letter code for a given amino acid type i, followed by ri numbers which correspond to the
computed volumes for the ri rotamers for amino acid i (the rotamers are specified by the respective
rotamer library, see Sec. 3.2.1).
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Each line in the mutFileName file represents a unique candidate mutation sequence. The
set of candidate mutation sequences is determined as a function of the following parameters from
MutSearch.cfg: numMutations, resAllowed, addWT, targetVolume, and volumeWindow.
Let k be the value of numMutations and let n be the total number of mutable residue postions.
K∗ then generates all possible combinations in which the n residue positions are mutated in 1,
2, . . . , up to k positions. For each possible combination of mutated/non-mutated positions, all
residue combinations are generated using the corresponding position-specific allowed amino acid
types specified by the resAllowed parameters; if addWT is true, a position is allowed to also
keep its wildtype identity when mutated. For each possible combination of mutated/non-mutated
positions, the non-mutated positions are kept in their wildtype identity. This generates a set of
candidate mutation sequences. Each unique sequence is then subjected to the volume filter: the
sum of the amino acid volumes for the current amino acid assignment to the n positions is checked
to determine if that sum falls within the range targetVolume ± volumeWindow. If the current
sum of volumes is within that range, the corresponding mutation sequence passes the volume filter
and is kept for the following K∗ computation stage; otherwise, the mutation sequence is considered
as over- or under-packed relative to the wildtype sequence/ligand complex, and is thus pruned
from further consideration. Each line in the mutFileName file corresponds to a sequence that
has passed the K∗ volume filter. The format of each line is as follows:

c1 c2 a1 a2 . . .an

The values of the first two numbers c1 and c2 can be ignored (c2 represents the sum of the
volumes for the current amino acid assignment to the n mutable positions; however, this value
is not used by K∗ after the volume filter checks). The ai values give the three-letter amino acid
codes for the current amino acid assignment to the n mutable positions. An example of a partial
mutFileName file may look like this:

0.0 584.09375 ALA ALA ARG ILE ALA ALA ILE
0.0 583.9844 ALA ALA THR ILE ALA ALA TRP
0.0 581.40625 ALA ALA THR ILE ALA MET ILE
0.0 599.4219 ALA ALA THR ILE ALA PHE ILE
0.0 624.7344 ALA ALA THR ILE ALA TRP ILE

NOTE: In some cases, the user may prefer to manually generate the list of candidate mutation
sequences to be evaluated by K∗. This can be done by manually generating the mutFileName
file, as long as the format of each line (two arbitrary numbers followed by the three-letter amino
acid codes for the current mutation sequence) is observed.

NOTE: Currently, the volume filter cannot be used for redesigns with ligands that are not
natural amino acids. If the ligand is not a natural amino acid, it is recommended to set the
volumeWindow parameter to a very large value (e.g., 10000000.0), so that no mutation sequences
can be pruned by the volume filter.

After the list of candidate mutation sequences is generated and saved, each of the mutation
sequences is distributed to a separate processor for evaluation (if the number of sequences exceeds
the number of available processors, a queue is formed and sequence distribution continues until the
K∗ score computation for all sequences completes). Once the K∗ computation for a given sequence
completes, the results for that sequence are stored in the file specified by the runName parameter
in MutSearch.cfg. The format for each line in that file (corresponding to a single completed
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mutation sequence) is the following (line is wrapped):

Completed mutation m Score s Volume v SlaveNum -1 Time t1 t2 InitBest s1 FinalBest s2 a1

a2 . . . an EConfInfo c1 c2 c3 c4 ELConfInfo c5 c6 c7 c8 MinEMinimized em1 em2 MinEUnMinimized
ei1 ei2 Partial q E qp Partial q EL qpl E total cp EL total cpl ESecondEw b1 ELSecondEw b2
E allPruned b3 EL allPruned b4 q L ql

Each line in the runName file contains several types of information related to the K∗ computa-
tion for the corresponding mutation sequence. However, to rank mutation sequences, it is sufficient
to only look at the Score value s (which gives the computed K∗ score for the current mutation
sequence) and the ak values, 1 ≤ k ≤ n (which give the amino acid types for the n mutable residue
positions in the current mutation sequence). Once the computation for all mutation sequences is
complete, the runName file can be read in, and sequences can be sorted according to the Score
value s. The higher the value s, the better binder the corresponding sequence is predicted to be.
The doSinglePartFn command can then be run to generate the structures from the K∗ ensem-
bles (for the bound or unbound partition function computation) for a user-selected set of the top
mutation sequences (see below).

The rest of the data output for each mutation sequence (each line in the runName file) is
briefly described next.

• m: an index assigned by the program to each mutation sequence. This index does not have any specific
meaning and need not be unique (e.g., multiple sequences may have the same index if a mutation search
is resumed, see below).

• v: the volume for the current mutation sequence (mutable positions only), computed as described
above.

• t1, t2: the time (in minutes) for computing the partition functions for, respectively, the unbound and
bound states.

• s1: the best score found in the search at the time when the computation for the current mutation
sequence was started. Note that this score is not necessarily the overall best score, since scores are
continuously updated as more sequences complete their computation.

• s2: the best score found in the search at the point where the computation for the current mutation
sequence completes.

• c1, c2, c3, c4: the number of conformations for the unbound partition function computation that are,
respectively, enumerated by K∗, pruned in the DEE pruning stage, pruned by the steric filter, and
pruned by the A∗ filter (for details of the different filters, see [10]).

• c5, c6, c7, c8: the number of conformations for the bound partition function computation that are,
respectively, enumerated by K∗, pruned in the DEE pruning stage, pruned by the steric filter, and
pruned by the A∗ filter.

• em1 , em2 : the lowest energy after minimization for any conformation in the, respectively, unbound
and bound partition function computation.

• ei1 , ei2 : the lowest energy before minimization for any conformation in the, respectively, unbound and
bound partition function computation.

• qp: the value of the computed unbound partition function for the current mutation sequence.
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• qpl: the value of the computed bound partition function for the current mutation sequence with the
ligand.

• cp: the total number of conformations for the unbound partition function computation (cp = c1 + c2 +
c3 + c4).

• cpl: the total number of conformations for the bound partition function computation (cpl = c5 + c6 +
c7 + c8).

• b1: a boolean value (true or false) that determines whether the partition function computation for the
unbound state was repeated (see the repeatSearch parameter in MutSearch.cfg).

• b2: a boolean value (true or false) that determines whether the partition function computation for the
bound state was repeated.

• b3: a boolean value (true or false) that determines whether all conformations for the current mutation
sequence were pruned in the unbound partition function computation. This can happen if, e.g., there
are no sterically-allowed conformations for the current mutation sequence.

• b4: a boolean value (true or false) that determines whether all conformations for the current mutation
sequence were pruned in the bound partition function computation.

• ql: the value of the computed unbound partition function for the ligand.

Resuming a mutation search. In some cases (e.g., due to unexpected processor restarts),
the mutation search may be interrupted before the computation for all sequences completes. An
interrupted mutation search can be resumed, so that only mutation sequences for which the com-
putation did not complete are re-distributed for evaluation. To resume an incomplete search, the
runName file must be renamed to the filename specified by the resumeFileName parameter in
MutSearch.cfg and the resumeSearch parameter should be set to true. The completed results
from the partial runName file (which is now the resumeFileName file) are then read in, and
only the mutation sequences that are not yet computed are distributed for evaluation. The resumed
search generates a new runName file with the newly-computed sequence results. If a search must
be resumed more than once, all of the previously-completed sequence results must be concatenated
into the resumeFileName file. When the computation for all sequences completes, the resume-
FileName and runName file must be concatenated to generate the complete sequence results
file.

Structure Generation

The doSinglePartFn command can be executed separately for a number of user-selected mutation
sequences in order to generate pdb structures for the respective K∗ ensembles from the bound or
unbound partition function computation. Each structure from the respective ensemble is output
to a file with the following filename: the concatenation of (1) the pdbPrefix parameter in Mut-
Search.cfg, and (2) the conformation number for the given structure, as determined by the order in
which the structures are generated (i.e., the first structure from the ensemble will have a conforma-
tion number of 1, the next one will have a conformation number of 2, etc.). NOTE: The user must
make sure that either the pdbPrefix parameter has a different value for each different mutation
sequence evaluated by doSinglePartFn, or that all pdb structures are saved in a unique folder, to
guarantee that generated structures are not overwritten upon new calls to doSinglePartFn.
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5.3 Residue Entropy Computation

OSPREY can apply a Self-Consistent Mean Field (SCMF) approach to compute residue entropies
for each residue position in a protein. By using SCMF, self- and pairwise rotamer energies can
be computed and used to compute rotamer, and subsequently, amino acid probabilities for any
given position in a protein [19]. Residue positions with high entropy can then be redesigned using
MinDEE/A∗ to predict mutations anywhere in a protein. This hybrid SCMF and MinDEE/A∗

approach was used in [1] to predict bolstering mutations both close to and far from an enzyme’s
active site for additional improvement in the enzyme specificity (active site mutations were first
identified using the K∗ algorithm).

The SCMF computation for a given protein can be performed by OSPREY using the following
command:

doResEntropy System.cfg ResEntropy.cfg

The System.cfg and ResEntropy.cfg configuration files are described in detail below (Sec. 5.3.1).
The output of the doResEntropy command is described in detail in Sec. 5.3.2.

NOTE: The residue entropy computation is only performed for a protein. If the input structure
contains a ligand, the ligand is deleted from the structure before the residue entropy computation.

5.3.1 Configuration Files

System.cfg

A typical file will look like this:

pdbName 1amuH.pdb
pdbLigNum 550
ligAA true
numCofRes 1
cofMap 551

All of the parameters are as described for the System.cfg file in Sec. 5.1.1. Note that the
System.cfg file here does not include the two parameters numInAS and residueMap.

ResEntropy.cfg

This configuration file contains the information about the SCMF residue entropy computation. A
typical file will look like this:

stericE 30.0
maxPairE 1000.0
useEref true
dist 8.0
matrixName 1amu_resBBPEM
rotProbFile 1amu_rotProb
runName 1amu_resEntropy

A description of the parameters is as follows:
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stericE

Rotamers with intra-rotamer plus rotamer-to-template energy greater than this thresh-
old are pruned as a preprocessing step.

maxPairE

Rotamer pairwise energies greater than maxPairE are reset to maxPairE.

useEref

Determines if amino acid reference energies are used as part of the energy function.

dist

Distance cutoff for considering two residues as interacting for the energy computation.
This parameter is also used as a cutoff for computing the number of neighboring (proximate)
residues to a given residue position (see [1, Supporting Information, Sec. S1.2.3]).

matrixName

Prefix for the filenames of the different output matrices described in Sec. 5.3.2.

rotProbFile

The file to which the computed rotamer probabilities are output. This file contains the
computed rotamer probabilities for each rotamer, for each amino acid type, for each residue
position in a protein. The residue entropies are computed using the rotamer probabilities
saved in this file. This is a binary file and is described in Sec. 5.3.2.

runName

The file to which the computed residue entropies are output. The format of this file is
described in detail in Sec. 5.3.2.

5.3.2 Output Files

Energy and Other Output Matrices

The first step in the residue entropy computation is the computation of the self- and pairwise
rotamer energies. Four different matrices are computed and stored in the main program code
folder. These matrices have filenames starting with the matrixName parameter as a prefix. The
matrix ending in ‘ dist.dat’ is a boolean matrix that determines if two residues are within the
cutoff interaction distance specified by the dist parameter. The matrices ending in ‘ intra’ and
‘ shll’ contain the intra-rotamer and rotamer-template energies, respectively, for all rotamers for
each amino acid type at each residue position. The file ending in ‘ pair’ contains a pointer to
all computed rotamer-rotamer pairwise matrices in the peme subfolder; the full rotamer-rotamer
pairwise matrix is divided into multiple smaller pairwise matrices as a way to somewhat decrease
the memory requirements for very large systems. The file ending in ‘ pair’ is the only plain-text
matrixName file; all other matrixName files are binary files.

NOTE: A file with filename specified by the runName parameter concatenated with ‘.log’
is generated during the matrix computation. This file contains information about the completed
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distributed jobs for a given matrix, and is only used to update the user for the current progress of
the computation. This file can be deleted at the end of the computation.

NOTE: The SCMF computation typically requires more memory resources (especially for very
large systems), so in some cases java may need be executed with larger values for -Xmx, e.g.,
-Xmx4096M.

NOTE: The user must make sure that all files generated by a given SCMF run (including the
files in the peme subfolder) are moved and saved to another location, in order to avoid the possibility
of overwriting or unintentionally using existing files for subsequent SCMF runs on different systems.

NOTE: Once any of the matrices described here is computed and saved, it can be reloaded and
will not require re-computation if the program execution is interrupted and needs to be restarted.
Unlike the K∗ and GMEC-based redesigns, no specific flag needs to be set for the program execution
to resume. When resumed, the program automatically reads in all computed matrices.

Residue Entropy Results

Once all of the energy matrices have been computed and stored, the program moves to the actual
residue entropy computation. At this point in the computation, the program requires only a single
processor for execution. First, the probabilities for each rotamer for each amino acid type (other
than Pro) for each non-Pro residue position in the protein are computed using SCMF. As a pre-
processing step, rotamers with intra-rotamer plus rotamer-to-template energy greater than the
value of the stericE parameter are pruned from further consideration. Pairwise rotamer energies
greater than the value of the maxPairE parameter are reset to maxPairE. The SCMF rotamer
probability computation then continues using a temperature annealing scheme that starts at 50000
and ends at 300 in steps of 100.

Once the SCMF computation is done, the computed rotamer probabilities are saved to the
file specified by the rotProbFile parameter in ResEntropy.cfg. This is a binary file that can
also be read in (once computed) if the computation is resumed. Based on the computed rotamer
probabilities, the program then computes the corresponding amino acid probabilities for each non-
Pro residue position in the input protein. Finally, using the computed amino acid probabilities,
the residue entropy of each non-Pro residue position in the protein is computed. The computed
residue entropies, as well as the amino acid probabilities for each residue position, are output to
the runName file. The format of the runName file is described next.

The first line in the runName file is a header line that contains the column headers for the
remainder of the file and has the following format:

resNum pdbResNum resDefault entropy a1 a2 . . . am numProx

Here, ai is the three-letter code for amino acid type i (for a total of m amino acid types). The
order in which the amino acid types are found in the header line depends on the order in which
the amino acid types are read in from the rotFile rotamer library (see Sec. 3.2.1). If the default
rotamer library is used, the header line in the runName file will look like this:

resNum pdbResNum resDefault entropy ALA VAL LEU ILE PHE TYR TRP CYS MET
SER THR LYS ARG HIP ASP GLU ASN GLN GLY numProx

The remainder of the runName file is organized as follows. Each line in the file corresponds
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to a residue position in the protein and has the following format:

r1 r2 d e p1 p2 . . . pm c

The data values are described as follows:

• r1: a residue index for the current residue position. This is typically different from the corresponding
residue number from the input pdb structure (see the description of r2).

• r2: the corresponding residue number as read in from the input pdb structure.

• d: the three-letter code of the wildtype amino acid identity for the current residue position.

• e: the computed residue entropy for the current residue position.

• p1, . . . , pm: for the current residue position, the computed amino acid probabilities for amino acid
types a1, . . . , am.

• c: the number of neighboring (proximate) residue positions as determined by using the dist parameter
from ResEntropy.cfg.

An example line in the runName file may look like this (line is wrapped):

144 161 ILE 1.287177995617508 0.00929384361661082 0.1865197940818237 0.0018160912871596096
0.6212177621704273 5.759059371666681E-6 0.0 0.025903650444377087 0.044798603334293544
0.06779569113561482 0.006199166859597977 0.01621958547873389 6.625486153748881E-4
3.2651327046301967E-4 7.612305618644515E-4 9.587107682972999E-5 7.080503569800633E-4
0.0033621847202647053 0.008280530237428764 0.00603312369278387 55

Residue positions can then be ordered according to their e values (the computed residue en-
tropies). Typically, residue positions with high e values are selected for a subsequent MinDEE/A∗

mutation search. Additionally, the number c of neighboring (proximate) residues can be used to fil-
ter out residue positions with too few neighboring residues (see [1, Supporting Information, S1.2.3]
for details). The MinDEE/A∗ mutation search can also be limited to include only amino acid types
with high probabilities (the pi values) for a selected residue position.
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Chapter 6

Special Types of Redesign

OSPREY is optimized for redesigning proteins and for designing protein-small molecule interac-
tions. It is possible, however, to perform redesigns for other types of problems. This chapter
provides instructions for applying OSPREY to two special cases of redesign problems: modeling
protein-protein and protein-peptide interactions (Sec. 6.1) and modeling explicit water molecules
(Sec. 6.2).

6.1 Protein-Protein and Protein-Peptide Redesign

In the current OSPREY version, protein-protein and protein-peptide interactions can be modeled
with certain limitations. Peptides can be modeled as long as the peptide consists only of natural
amino acids. A newer version of OSPREY that incorporates many improvements for performing
protein-protein and protein-peptide redesign is currently being developed and may be available in
the future.

Since OSPREY does not require that the protein structure include sequential residues (i.e.,
there can be gaps with respect to the protein sequence), two proteins or a protein/peptide complex
can be included as part of the input structure and redesigned. In that case, OSPREY will not
model the second protein or the peptide as a ligand. Instead, all protein and peptide residues will
be modeled as one (virtual) protein, in which selected resdues can be allowed to mutate, change
their side-chain conformation, and energy-minimize.

As an example, let us consider a protein-protein complex (consisting of proteins A and B)
in which both proteins have a total of 150 residues. Let the input pdb structure prot.pdb be
formatted according to the instructions in Sec. 4.1. Specifically, as discussed in Sec. 4.1, OSPREY
has no notion of chain IDs and no two residues in the input structure should have the same residue
numbers. Hence, let the residues for protein A have residue numbers between 1 and 150, and the
residues for protein B - between 151 and 300. The selected flexible/mutable residue positions in
both proteins must be included in the residueMap parameter in System.cfg (see Sec. 5.1.1). Let
the flexible/mutable residue positions in A be 5, 7, 20, and in B - 220, 230, 232, and 233. The
System.cfg may then look like this:

pdbName prot.pdb
numInAS 7
residueMap 5 7 20 220 230 232 233
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pdbLigNum -1
ligAA false
numCofRes 0
cofMap -1

NOTE: Currently, ligands in OSPREY can only be a single amino acid or small molecule. This
is the reason for setting pdbLigNum to -1 (which effectively means there is no ligand in the input
structure). Instead, both proteins are treated as part of one (virtual) protein molecule. Side-chain
and backbone flexibility can nevertheless be modeled for both proteins. However, no rigid-body
rotation and translation will be allowed under this setup (rotations/translations are only allowed
for the ligand).

NOTE: When modeling protein-peptide interactions, the current backbone flexibility approaches
in OSPREY may not be sufficient for the inherently more flexible peptides.

NOTE: Since the second protein cannot be modeled as a ligand, the K∗ algorithm cannot
be applied. Only the GMEC-based DEE/A∗ algorithms can be applied to protein-protein and
protein-peptide redesign problems.

NOTE: A newer version of OSPREY that incorporates many improvements for performing
protein-protein and protein-peptide redesign is currently being developed and may be available in
the future.

6.2 Modeling Explicit Waters

The EEF1 solvation model (Sec. 4.3) is the standard way of modeling solvation energies in OSPREY.
In some cases, however, explicit water molecules can also be included as part of the input structure
and used in the energy computation for the mutant structures. In the current version of OSPREY,
explicit water molecules can be modeled as rigid (virtual) cofactor residues. Several considerations
must be taken into account when modeling explicit water molecules:

• Water molecules can only be modeled as rigid: all explicit waters remain rigid in their position
from the input structure.

• All explicit waters must also include both hydrogens. The orientation of the hydrogens is also
kept rigid and must thus be optimized before starting the OSPREY mutation search.

• The three-letter code for each water molecule (residue) should be HOH. Each water molecule
must have three atoms with names: O, H1, and H2.

• It is recommended to only include water molecules that participate in important interactions,
but that are likely to remain in their input position/conformation and not be displaced by
mutated neighboring residues.

To build on the example System.cfg from Sec. 6.1 above, let us also model two water molecules
as part of the input structure. Let these two water molecules have residue numbers 310 and
320 (note that the residue numbers must be unique, as discussed in Sec. 4.1) and the following
coordinates (pdb format):
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ATOM 15580 O HOH 310 59.519 21.013 23.619 1.00 12.33
ATOM 15581 H1 HOH 310 59.317 21.271 22.674 1.00 19.69
ATOM 15582 H2 HOH 310 60.165 20.253 23.540 1.00 19.69
ATOM 15610 O HOH 320 54.153 21.474 18.635 1.00 13.78
ATOM 15611 H1 HOH 320 53.271 21.803 18.297 1.00 19.69
ATOM 15612 H2 HOH 320 54.628 21.145 17.819 1.00 19.69

The System.cfg from Sec. 6.1 should then be modified in the following way:

pdbName prot.pdb
numInAS 7
residueMap 5 7 20 220 230 232 233
pdbLigNum -1
ligAA false
numCofRes 2
cofMap 310 320

NOTE: The considerations for the input structure described in Sec. 4.1 must be followed when
modeling explicit water molecules.
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Chapter 7

OSPREY via an Example

This chapter presents a detailed example of how to apply K∗ to redesign an enzyme in order
to switch its specificity toward a novel substrate. The goal of this (over-simplified) example is,
however, not to present results of biomedical significance; rather, the goal is to assist the user in
setting up and applying OSPREY for their own protein design problems. NOTE: This example
describes how protein redesign can be performed using K∗. This example does not explain why
certain steps are performed. While this example captures a large portion of the K∗ specifics, there
are a number of special considerations not covered here. Moreover, DEE/A∗ and SCMF-based
redesigns are not described here. The user is therefore urged to also read the entire user manual,
and especially Chapter 4, before reading through this example.

OSPREY setup

The setup for performing a K∗ redesign can be divided into several sequential steps. The details of
each step are described below. We will assume that OSPREY and all related software have been
setup and are ready for use, as described in Chapter 2. The input files for this example are included
in the example/input folder in the OSPREY distribution.

1. Select a redesign system. We choose to redesign the phenylalanine adenylation domain of
the non-ribosomal peptide synthetase enzyme Gramicidin S Synthetase A (GrsA-PheA) for
a non-cognate substrate.

2. Select mutable positions. We select six of the GrsA-PheA active site residues for mutation:
239, 278, 299, 301, 322, and 330.

3. Obtain pdb input structure. The crystal structure of GrsA-PheA in complex with Phe
and the cofactor AMP is available (PDB id: 1amu [2]). We download the structure and
format it according to the instructions in Sec. 4.1. Specifically, we:

• Add hydrogens. We use MolProbity [4] to protonate the input structure. The resulting file
is 1amuFH.pdb in the example/input folder included with the OSPREY distribution.
NOTE: When adding hydrogens to 1amu, MolProbity could not add H1, H2, and H3 to
the Phe substrate; we can add these missing hydrogens using another external program
(e.g., Accelrys Discovery Studio Visualizer).
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• Select a steric shell. Since GrsA-PheA has more than 500 residues, we choose to only
include a steric shell of residues close to the active site of the enzyme as part of the
OSPREY input structure. First, we select the GrsA-PheA complex from Chain A in the
crystal structure. We delete all of Chain B and all water molecules; we also delete Mg
and SO4 from Chain A. At this point, the current structure consists of the following from
Chain A: all protein residues, the Phe substrate, and the AMP cofactor. The resulting
file may look like 1amuFH A.pdb in the example/input folder. To extract the steric
shell from this structure, we can use an external program (e.g., VMD [11]). Typically,
the shell is selected so that all residues close to the active site residues are included. For
simplicity, in this example, we choose to only include the residues within 8 Å from the
Phe substrate (this also includes the AMP cofactor). The file resulting from this step
may look like 1amuFH A 8-lig.pdb in the example/input folder.

• Rename HETATM to ATOM. If there are HETATM lines in the input structure, rename
HETATM to ATOM. NOTE: Remember to add two extra spaces after the word ATOM
in order to observe the standard PDB column widths. In this example, 1amuFH A 8-
lig.pdb contains no HETATM lines, so this step can be skipped.

• Rename HIS residues. This step is performed according to the instructions in Sec. 4.1.
In this example, 1amuFH A 8-lig.pdb contains no HIS residues, so this step can be
skipped.

• Check final structure. The final structure (1amuFH A 8-lig.pdb in this example) should
be checked for missing atoms, protonation states, and other considerations, as described
in Sec. 4.1. Specifically, every line should be an ATOM line and the last line should
be an END line; all residues must have unique residue numbers (chain ID’s are not
recognized).

4. Select a redesign target substrate. The wildtype substrate of GrsA-PheA is Phe. Our
choice is to redesign GrsA-PheA for a small molecule ligand with three-letter name ’FCL’
that differs from Phe in that chlorine is added to the para ring position (Fig. 4.1). FCL was
originally described in Sec. 4.3.

5. Obtain substrate coordinates. Since the target substrate is not a natural amino acid, it
must be part of the input structure: i.e., the Phe substrate in 1amuFH A 8-lig.pdb must be
replaced by FCL in the OSPREY input structure before performing the K∗ redesign. We can
use an external program, such as PyMOL [5], to build the FCL molecule from the Phe sub-
strate. We save the resulting structure as 1amuFH A 8-lig FCL.pdb in the example/input
folder. NOTE: OSPREY does not perform docking, so the target substrate must already
be docked in the binding site. Changes to the substrate conformation are allowed through
rotamer swaps and (for designs using MinDEE) side-chain dihedral minimization, as well as
bounded rigid-body rotation and translation.

6. Add missing force field parameters. The force field parameters for FCL are computed as
described in the example in Sec. 4.3 and are shown in Fig. 4.2. These parameters are added to
the all nuc94 and gr.in file as described in Sec. 4.3. Additional modifications must be made
to the parm96a.dat file (see Sec. 4.3 for details). The resulting modified all nuc94 and gr.in
and parm96a.dat files can be found in the example/input folder.
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7. Obtain FCL rotamers. For the FCL rotamers, we will use the Phe rotamers from the
Penultimate rotamer library [17]. The FCL rotamers must be added to the file specified by
the grotFile parameter in KStar.cfg (Sec. 3.2.1). We will assume this file is GenericRo-
tamers.dat. The following must be added to that file, following the instructions in Sec. 4.2
(remember to increase the first non-‘!’ line from 1 to 2):

FCL 2 4

N CA CB CG

CA CB CG CD1

62 90

-177 80

-65 -85

-65 -30

The resulting modified GenericRotamers.dat file can be found in the example/input folder.

8. Setup configuration files. The KStar.cfg, System.cfg, and MutSearch.cfg configuration
files that will be used in this example are shown below. A detailed description of these con-
figuration files, as well as some special considerations, is given in Secs. 3.2.1, 5.1.1, and 5.2.1,
respectively. We will only note that in this example, K∗ will aim at predicting up to 2-point
mutation sequences, as determined by the numMutations parameter in MutSearch.cfg.

KStar.cfg:

hElect true
hVDW false
hSteric false
distDepDielect true
dielectConst 6.0
vdwMult 0.95
doDihedE true
doSolvationE true
solvScale 0.8
stericThresh 0.4
softStericThresh 1.5
rotFile LovellRotamer.dat
grotFile GenericRotamers.dat
volFile AAVolumes.dat

System.cfg:

pdbName 1amuFH_A_8-lig_FCL.pdb
numInAS 6
residueMap 239 278 299 301 322 330
pdbLigNum 566
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ligAA false
numCofRes 1
cofMap 567

MutSearch.cfg:

runName 1amuFCL_MutSearch
mutFileName 1amuFCL_2MUT.mut
numMutations 2
targetVolume 620.0
volumeWindow 100000000.0
doMinimize true
minimizeBB false
doBackrubs false
backrubFile none
minEnergyMatrixName 1amuFCL_SCPEMmin
maxEnergyMatrixName 1amuFCL_SCPEMmax
initEw 6.0
pruningE 100.0
stericE 30.0
scaleInt false
maxIntScale 1.0
epsilon 0.03
gamma 0.01
repeatSearch true
useUnboundStruct false
unboundPdbName none
minEnergyMatrixNameUnbound none
maxEnergyMatrixNameUnbound none
ligPresent true
ligType fcl
addWT true
resAllowed0 gly ala val leu ile tyr phe trp met
resAllowed1 gly ala val leu ile tyr phe trp met
resAllowed2 gly ala val leu ile tyr phe trp met
resAllowed3 gly ala val leu ile tyr phe trp met
resAllowed4 gly ala val leu ile tyr phe trp met
resAllowed5 gly ala val leu ile tyr phe trp met
resumeSearch false
resumeFileName 1amuFCL_MutSearch.partial

Performing the K∗ redesign

At this point, we have setup OSPREY for performing a K∗ redesign of GrsA-PheA for the target
substrate FCL. To perform the K∗ redesign, we execute the following OSPREY command from the
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shell:

mpirun -machinefile ./machines -np 5 java -Xmx1024M KStar mpi -c KStar.cfg KSMaster
System.cfg MutSearch.cfg >! logKS.out

In this example, we will be running OSPREY on 5 processors. The output files generated by
the K∗ computation for this example can be found in the example/output folder in the OSPREY
distribution. The standard output is redirected to a file called logKS.out. Next, we show the
output as seen by the user. Output generated by the K∗ computation to the logKS.out file is
shown in this font. We will also include comments explaining the logKS.out output; these
comments are in bold and enclosed in brackets: [this is a comment]. The following signifies one
or more skipped lines of output: [.....].

K∗ execution

[Upon startup, the OSPREY program information is displayed first, as described in
Sec. 3.2:]

OSPREY Protein Redesign Software Version 1.0
Copyright (C) 2001-2009 Bruce Donald Lab, Duke University

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

There are additional restrictions imposed on the use and distribution
of this open-source code, including: (A) this header must be included
in any modification or extension of the code; (B) you are required to
cite our papers in any publications that use this code. The citation
for the various different modules of our software, together with a
complete list of requirements and restrictions are found in the
document license.pdf enclosed with this distribution.

OSPREY running on 5 processor(s)

[Next, the program outputs some of the parameter values that were read from the
input configuration files:]

Run Name: 1amuFCL_MutSearch
Precomputed Min Energy Matrix: 1amuFCL_SCPEMmin
Precomputed Max Energy Matrix: 1amuFCL_SCPEMmax
Ligand Type: fcl
Volume Center: 620.0
Volume Window Size: 1.0E8
Num Residues Allowed to Mutate: 2
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ResidueMap: 16(TRP A 239) 19(THR A 278) 23(ILE A 299) 25(ALA A 301) 30(ALA A
322) 38(ILE A 330)

[The program then checks if the pairwise energy matrices have been computed. If yes,
the matrices are loaded and the program execution continues to the mutation search;
if no, then the matrices are automatically computed:]

Checking if precomputed energy matrix is already computed...Precomputed energy
matrices not available..
Run Name: 1amuFCL_MutSearch
Precomputed Minimum Energy Matrix: 1amuFCL_SCPEMmin
Precomputed Maximum Energy Matrix: 1amuFCL_SCPEMmax
Ligand Type: fcl
Num Residues Allowed to Mutate: 2
Computing _All_ Rotamer-Rotamer Energies
Starting minimum and maximum bound energy computation
ResidueMap: 16(TRP A 239) 19(THR A 278) 23(ILE A 299) 25(ALA A 301) 30(ALA A
322) 38(ILE A 330)
Beginning setAllowables
Number of possible mutation combinations: 15
Length of mutArray: 29
Retrieving 0 of 29
Sent to proc 1

Retrieving 1 of 29
Sent to proc 2

Retrieving 2 of 29
Sent to proc 3

Retrieving 3 of 29
Sent to proc 4

Beginning setAllowables
Beginning setAllowables
Beginning setAllowables
Beginning setAllowables
.................................Finished: 3, Time: 2.7333333333333334
Retrieving 4 of 29, Sent to proc 4
[.....]

[The pairwise matrix computation is divided into several parts, and each part is dis-
tributed for evaluation by a separate processor. In this example, there are a total of
29 matrix parts. We are running on a total of 5 processors, so 1 processor serves as the
main compute node and the remaining 4 processors serve as work nodes. Hence, the
computation for four matrix parts is distributed to the work nodes. Once the compu-
tation for one of these parts completes (part 3 here), the next matrix part is retrieved
and submitted to the corresponding work node. The distributed matrix computation
continues until all of the 29 jobs complete:]

..................Finished: 28, Time: 4.45
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DONE: Pairwise energy matrix precomputation..
PEM execution time: 18.24973333333333
DONE: Pairwise energy matrix precomputation
done

[Note that each matrix part may require a different amount of time to complete, so
a job that was distributed at the beginning of the computation may in fact complete
last, and vice versa. Once the pairwise energy matrix computation is done, the two
(when energy minimization is performed) or one (with no energy minimization) energy
matrices are output. In this example, the filenames of the two energy matrices are:
1amuFCL SCPEMmin.dat and 1amuFCL SCPEMmax.dat.

Next, the program looks for the file that contains the list of candidate mutation
sequences (see the discussion in Sec. 5.2.2 of the mutFileName file specified in Mut-
Search.cfg). If the mutFileName file exists, it is read in and the program execution
continues to the K∗ score computation for the candidate mutation sequences. If that
file does not exist, then it is computed by the program, as described in Sec. 5.2.2:]

Looking for mutation list file ... no mutation list file found. Computing one.
Starting mutation combination 0 ...
................................................................................
.finished
Starting mutation combination 1 ...
................................................................................
.finished
Starting mutation combination 2 ...
................................................................................
.finished
Starting mutation combination 3 ...
................................................................................
.finished
Starting mutation combination 4 ...
................................................................................
.finished
Starting mutation combination 5 ...
................................................................................
.finished
Starting mutation combination 6 ...
................................................................................
..........finished
Starting mutation combination 7 ...
................................................................................
..........finished
Starting mutation combination 8 ...
................................................................................
..........finished
Starting mutation combination 9 ...
................................................................................
..........finished
Starting mutation combination 10 ...
................................................................................
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.finished
Starting mutation combination 11 ...
................................................................................
.finished
Starting mutation combination 12 ...
................................................................................
.finished
Starting mutation combination 13 ...
................................................................................
.finished
Starting mutation combination 14 ...
................................................................................
..........finished
Starting mutation combination 15 ... .........finished
Starting mutation combination 16 ... .........finished
Starting mutation combination 17 ... .........finished
Starting mutation combination 18 ... .........finished
Starting mutation combination 19 ... ..........finished
Starting mutation combination 20 ... .........finished
Starting mutation combination 21 ... .finished
Sequences remaining after volume filter 1316
Allocated newArray
Initial Length of mutArray: 200000
Trimmed Length of mutArray: 1316
Removing duplicates...done
1050 unique mutation sequences found in volume range -9.9999376E7 to
1.00000624E8
Total number of conformations (bound and unbound) for all sequences: 26456220
Ligand partition function (double): 0.00356708

[As a result of the mutation list computation, we get 1050 candidate mutation se-
quences. The list of candidate sequences is saved to the file 1amuFCL 2MUT.mut. Note
that in this example the volume filter is actually turned off, so no sequence pruning
is performed based on volumes. The last two lines from the output above specify
the total number of rotamer-based conformations for the bound and unbound states
for all candidate mutation sequences and the value of the computed ligand partition
function.

Next, the computation of the K∗ score for each of the 1050 candidate mutation
sequences is distributed to a separate work node for evaluation. Again, the first 4
sequences (equal to the number of available work nodes) are distributed, and once
the computation for one of these sequences is complete, a new candidate sequence is
retrieved and sent for evaluation.]

Retrieving 0 of 1050
Sent to proc 1

Retrieving 1 of 1050
Sent to proc 2

Retrieving 2 of 1050
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Sent to proc 3

Retrieving 3 of 1050
Sent to proc 4

Loading precomputed min energy matrix...Loading precomputed min energy
matrix...Loading precomputed min energy matrix...done
MinDEE: Loading precomputed max energy matrix...Loading precomputed min energy
matrix...done
MinDEE: Loading precomputed max energy matrix...done
Beginning setAllowables
Number of rotamers pruned due to incompatibility with the template: 1
Computing MinDEE interval terms..done.

ind: 54.678131103515625 54.678131103515625 50.374237060546875
54.678131103515625 54.678131103515625 4.30389404296875
pair: 5.016383171081543 5.694559335708618 5.664247035980225 10.66715407371521
10.666823148727417 5.01689887046814
Current run: 1
Starting AS residue 0.done
Starting AS residue 1.done
Starting AS residue 2.done
Starting AS residue 3.done
Starting AS residue 4.done
[.....]

[The K∗ score computation for each candidate sequence generates various types of
output to the logKS.out file, including DEE pruning information and information re-
lated to the ensemble of conformations generated by A∗. Since multiple sequences
are evaluated at the same time, the output for the different sequences is intermixed.
This output is useful in some special cases but can typically be discarded. When the
K∗ computation for a given sequence completes, the results for this sequence are out-
put to the file specified by the runName parameter in MutSearch.cfg, as described in
Sec. 5.2.2. In this example, this file is 1amuFCL MutSearch. When the K∗ computation
for all sequences completes, the following is output:]

DONE: K* computation

[To verify that the computation for all sequences has indeed completed, we can com-
pare the number of lines in the 1amuFCL 2MUT.mut and 1amuFCL MutSearch files -
these numbers should be equal. In this example, the number of lines in 1amuFCL Mut-
Search must be 1050 - we can verify this using, e.g., wc. If the K∗ computation is inter-
rupted, we can resume the search using the partial results from 1amuFCL MutSearch,
as described in Sec. 5.2.2.]

Analysis of results

At this point, we have computed K∗ scores for all candidate mutation sequences. The sequences can
now be ranked in order of decreasing K∗ scores, as described in Sec. 5.2.2. The top ten mutants,
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Rank K∗ Score 239 278 299 301 322 330
1 4.25E + 24 ILE TRP ILE ALA ALA ILE
2 3.12E + 24 VAL TRP ILE ALA ALA ILE
3 2.18E + 24 ILE THR ILE PHE ALA ILE
4 1.45E + 24 VAL THR ILE PHE ALA ILE
5 1.41E + 24 ILE THR ILE TYR ALA ILE
6 1.40E + 24 ILE PHE ILE ALA ALA ILE
7 9.55E + 23 VAL PHE ILE ALA ALA ILE
8 9.27E + 23 VAL THR ILE TYR ALA ILE
9 8.85E + 23 ALA TRP ILE ALA ALA ILE
10 6.57E + 23 MET TRP ILE ALA ALA ILE

Table 7.1: Top ten mutants predicted by K∗ for the example redesign of GrsA-PheA for FCL. For
each of the mutants, the predicted amino acid identities at the six mutable residue positions are
shown along with the corresponding K∗ rank and computed score.

along with their K∗ scores for this example are shown in Table 7.1. NOTE: As was already
noted, the goal of the (oversimplified) example described in this chapter and the computational
predictions is to assist the user in setting up and applying OSPREY for their own system, rather
than to present results of biomedical significance.

Visualization of predicted structures

At this point, we have the top mutant predictions as determined by K∗. We can now generate and
visualize predicted structures from the K∗ ensembles for a selected set of the top mutants. We
choose to visualize structures for the bound protein-substrate ensemble of the top-ranked mutant
W239I/T278W. To do this, we can use the doSinglePartFn command:

java -Xmx1024M KStar -c KStar.cfg doSinglePartFn System.cfg SinglePF.cfg >! logSPF.out

Note that the doSinglePartFn command, unlike KSMaster, does not require MPI and dis-
tributed execution. Hence, we can simply use the command as shown above, without using mpirun.
The input/output files as well as the computed structures for this example are included in the
example/struct folder in the OSPREY distribution. The parameter values of the SinglePF.cfg
configuration file are given below; this file is described in detail in Sec. 5.2.1.

SinglePF.cfg:

doMinimize true
minimizeBB false
doBackrubs false
backrubFile none
minEnergyMatrixName 1amuFCL_SCPEMmin
maxEnergyMatrixName 1amuFCL_SCPEMmax
initEw 6.0
pruningE 100.0
stericE 30.0
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scaleInt false
maxIntScale 1.0
epsilon 0.03
gamma 0.01
repeatSearch true
resMut ILE TRP ILE ALA ALA ILE
ligPresent true
ligType fcl
outputPDBs true
pdbPrefix pdbs/1amuFCL_
bestScore 2183091932959800697659312.82422150
protPartFn 159304123380538183833360725603391236707263316455397704887424340607652
35993841335877708506511476171621822096215867891565727481052525690256347324650653
15902489129779248569737575226250840643408253299348510492212113054580162717691191
16957445360544516193553071079829135500741194500513652097139354693011546300590300
49011209136620375459455218984833362811641976000247270723349681855843.96015854

The standard output from the doSinglePartFn run is redirected to the logSPF.out file. Output
generated by the K∗ computation to the logSPF.out file is shown in this font. We will also
include comments explaining the logSPF.out output; these comments are in bold and enclosed in
brackets: [this is a comment]. The following signifies one or more skipped lines of output: [.....].

[As usual, the OSPREY program information is displayed first, as described in Sec. 3.2:]

OSPREY Protein Redesign Software Version 1.0
Copyright (C) 2001-2009 Bruce Donald Lab, Duke University

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

There are additional restrictions imposed on the use and distribution
of this open-source code, including: (A) this header must be included
in any modification or extension of the code; (B) you are required to
cite our papers in any publications that use this code. The citation
for the various different modules of our software, together with a
complete list of requirements and restrictions are found in the
document license.pdf enclosed with this distribution.

OSPREY running on 1 processor(s)

[Next, the program outputs some of the parameter values that were read from the
input configuration files, including the particular mutation sequence for which we are
computing the ensemble structures:]
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ResidueMap: 16(TRP A 239) 19(THR A 278) 23(ILE A 299) 25(ALA A 301) 30(ALA A
322) 38(ILE A 330)
Mutation Sequence: ILE TRP ILE ALA ALA ILE
Beginning setAllowables
Loading precomputed min energy matrix...done
Ligand partition function (double): 0.00356708
Before start

[Next, the program performs MinDEE-based pruning, and displays some related in-
formation and statistics:]

Number of rotamers pruned due to incompatibility with the template: 11
Computing MinDEE interval terms..done.

ind: 92.58587646484375 148.0013427734375 180.3873291015625 184.69122314453125
184.69122314453125 134.31698608398438 183.47335815429688
pair: 1038.102953672409 565.7130352258682 882.9790832996368 1424.3734160661697
1577.3457723855972 1085.528309226036 1399.7722948789597
Current run: 1
Starting AS residue 0.done
Starting AS residue 1.done
Starting AS residue 2.done
Starting AS residue 3.done
Starting AS residue 4.done
Starting AS residue 5.done
Starting ligand run..done
Number of rotamers pruned this run: 1
DEE: The minimum difference is -844.6013952493668

Current run: 2
Starting AS residue 0.done
Starting AS residue 1.done
Starting AS residue 2.done
Starting AS residue 3.done
Starting AS residue 4.done
Starting AS residue 5.done
Starting ligand run..done
Number of rotamers pruned this run: 0
DEE: The minimum difference is -844.6013952493668

Current run: 1
Starting AS residue 0.done
Starting AS residue 1.done
Starting AS residue 2.done
Starting AS residue 3.done
Starting AS residue 4.done
Starting AS residue 5.done
Starting ligand run..done
Number of rotamers for the current sequence: 34
Number of rotamers pruned this run: 2

minE: 9.999999680285692E37 maxE: 9.999999680285692E37 pruningE: 100.0 Ew: 6.0
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Ec: 9.999999680285692E37
Num rotamers pruned due to unallowed sterics (from Bounds): 2

Current run: 2
Starting AS residue 0.done
Starting AS residue 1.done
Starting AS residue 2.done
Starting AS residue 3.done
Starting AS residue 4.done
Starting AS residue 5.done
Starting ligand run..done
Number of rotamers for the current sequence: 34
Number of rotamers pruned this run: 0

minE: 9.999999680285692E37 maxE: -9.999999680285692E37 pruningE: 100.0 Ew: 6.0
Ec: 9.999999680285692E37
Num rotamers pruned due to unallowed sterics (from Bounds): 0

Current run: 1
Starting AS residue 0.done
Starting AS residue 1.done
Starting AS residue 2.done
Starting AS residue 3.done
Starting AS residue 4.done
Starting AS residue 5.done
Starting ligand run..done
Number of rotamers for the current sequence: 34

minE: 9.999999680285692E37 maxE: -9.999999680285692E37 pruningE: 100.0 Ew: 6.0
Ec: -526.9367780685425
Num rotamers pruned due to unallowed sterics (from all criteria): 9

One Mutation Conf Found and is being tested
k_const: 648 pStar:
49067609227542163291289254320528748942616920281842277242212836853134934304413858
05169442422913289354482210093141871661925246446936371645296716819728578241329567
72005815081861329712020364309248952336560041150778092300482899345480040837954190
88077812737098532113522365407343473185245996911800307801115489168951984842807475
329224903146052788956084782164345051973040456654030439645995548964604.43688016
numConfsPrunedMinDEESteric: 8596

[At this point, the A∗ search is started and rotamer-based conformations and structures
are generated, until the computed ensemble partition function is guaranteed to be
within ε of the full partition function, or until the inter-mutation filter determines
that the current mutation sequence is not a feasible candidate [10]. Information for
each A∗-generated conformation is displayed:]

6 3 5 0 0 4 3
conf: 1 minELowerBound: -548.2034912109375 curThreshold: -535.2999449749552
pStar(double): Infinity qStar(double): 0.0 rho*qStar(double): 0.0
energy: -543.8115
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6 3 5 0 0 4 2
conf: 2 minELowerBound: -547.7808837890625 curThreshold: -538.2642303245228
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity
energy: -538.9178
6 3 4 0 0 4 3
conf: 3 minELowerBound: -547.24658203125 curThreshold: -538.2693896359148
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity
energy: -543.22473
[.....]
5 3 2 0 0 4 2
conf: 37 minELowerBound: -539.6468505859375 curThreshold: -538.5397930967628
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity
energy: -531.16187
5 3 6 0 0 5 2
conf: 38 minELowerBound: -539.3419799804688 curThreshold: -538.5416848056631
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity
energy: -529.3732
4 3 3 0 0 4 3
conf: 39 minELowerBound: -539.037353515625 curThreshold: -538.5435825678219
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity
energy: -521.02075
4 3 3 0 0 4 2
conf: 40 minELowerBound: -538.628662109375 curThreshold: -538.545486422314
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity
energy: -516.04034
4 3 2 0 0 4 3
conf: 41 minELowerBound: -538.54248046875 curThreshold: -538.5473964083933
pStar(double): Infinity qStar(double): Infinity rho*qStar(double): Infinity

[Zooming in, four lines of output are generated for each conformation. For example,
the output associated with the first conformation shown above is the following:

6 3 5 0 0 4 3
conf: 1 minELowerBound: -548.2034912109375 curThreshold: -535.2999449749552
pStar(double): Infinity qStar(double): 0.0 rho*qStar(double): 0.0
energy: -543.8115

The first line gives the corresponding rotamer index for each of the mutable residue
positions (in this case, six). The second line shows: (1) The number of the current
conformation in terms of the A∗ generation order; (2) A lower bound on the energy of
the conformation (as computed using the precomputed pairwise energy matrices); and
(3) The current stop-threshold, as given by [10, Eq. A20]. The A∗ enumeration stops
when the lower bound on the energy of the current conformation becomes greater
than the current stop threshold. The third line shows the current (partial) partition
functions; for reasons of space, these values are displayed only with double precision,
so larger values are shown as Infinity. The last line shows the (minimized) energy
computed for the current conformation.

Once the stop threshold is reached, the A∗ search halts, and the computation statis-
tics are displayed:]

Statistics (bound):
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Best Energy: -543.8115234375
partial_q:
24141441511867708183603979839649623057702138766052145837054341072536726565446708
91426359712060156094054039210361767126205754941656205661671297671138129480138430
07688833854783673688788184519852040201461963430592031012180996509148653698461346
28683834766342525554361634707288259171995491305342574507130543987377445660250204
3108449723888961228514738993615176234722869747397686011821768244809688536642467.
31489331
partial_p: 0
NumConfsTotal: 9604
NumConfsPrunedByMinDEE: 9244
NumConfsPrunedByS: 10
NumConfsEvaluated: 40
NumConfsLeft: 310

For each conformation generated by A∗, the computed structures are also output in pdb format
to the folder (and using the filenames) specified by the pdbPrefix parameter in SinglePF.cfg.
In this example, the program has generated forty structures in a subfolder called pdbs (the
user must make sure this folder exists before the execution of doSinglePartFn), with filenames
1amuFCL 1.pdb through 1amuFCL 40.pdb. These structures can now be analyzed and visual-
ized using tools like MolProbity [4] and PyMOL [5]. These structures are for the bound state
ensemble of the selected mutant. Additionally, structures from the free protein ensemble can also
be generated for that mutant by setting the ligPresent parameter in SinglePF.cfg to false. Struc-
tures for other mutants can also be generated by running the doSinglePartFn command separately
for each selected mutant.

With this, we conclude the example of how to perform K∗ redesign for a given system. This
example covers some of the specifics of using the OSPREY software. However, the user is urged to
read the entire user manual since the other OSPREY commands, as well as some other details not
relevant to the example described in this chapter, are not described here. Further details on the
algorithms used in OSPREY can be found in our publications [1, 10, 7, 8, 9].
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Appendix A

OSPREY Class Summary

This Appendix is intended to serve as a starting point for users interested in modifying and ex-
tending the OSPREY source code. A summary of the OSPREY classes is as follows:

• Amber96ext: This class handles the energy computation for a given molecule. The Amber
force field parameters are read in and saved upon initialization. The EEF1 solvation param-
eters are also read in using the EEF1 class functions. The energy (including electrostatic,
vdW, and solvation) and gradient computation for the full molecule or a selected subset of
the molecule atoms is performed by this class.

• Amber96PolyPeptideResidue: This class contains hard-coded templates for the different
amino acid types. These templates are used when performing residue mutations.

• AminoAcidTemplates: This class reads from three data files specifying amino acid residues, N-
terminal amino acid residues, and C-terminal amino acid residues. Information read includes
element type, atom type, limited connectivity, and partial charge. By matching these amino
acid templates to actual residues in a molecule, the corresponding template atom types and
partial charges can be assigned to the matched residues.

• Atom: Handles functions and data associated with atoms. Example functions include adding
a bond between atoms, computing torsion, computing atom distance, etc. Some of the data
members include the atom name, radius, mass, coordinates, and bond information.

• Backbone: Handles the backbone representation for the protein; Applies (phi,psi) changes to
the molecule; Assumes that the order of the atoms for the phi angle is C(i-1), N(i), CA(i),
C(i), and for the psi angle: N(i), CA(i), C(i), N(i+1).

• BackrubMinimizer: Handles two types of energy minimization: (1) the minimization required
for computing the pairwise energy matrices; (2) the minimization of a full conformation: the
side-chain dihedrals are kept rigid, while the backbone is allowed to move using backrub
motions. Currently, Backrub minimization can be applied only to the system strand of the
molecule; the ligand (if present) is allowed to rotate and translate.

• Backrubs: Handles the application of the Richardsons’ Backrub motions for a given residue
in a protein.

71



• BBMinimizer: Handles two types of backbone energy minimization for BD: (1) the min-
imization required for computing the pairwise energy matrices; (2) the minimization of a
full conformation: the side-chain dihedrals are kept rigid, while the backbone dihedrals are
allowed to move within given limits.

• BoundFlags: Applies the Bounding Flags pruning criteria: computes a lower bound on the
energy of all conformations that contain a given rotamer pair (ir,js), for each rotamer pair.

• CommucObj: The CommucObj class is a data structure used in communication between the
master and slave nodes. It is basically just a data container. It allows the master node to
specify what type of search the slave should perform and it allows the slave to return the
result of the computation to the master.

• DEEGoldstein: Performs simple Goldstein DEE rotamer pruning.

• DEEGoldsteinPairs: Performs DEE Goldstein pairs rotamer pruning.

• DEESplit1f: Performs full split-DEE (conformational splitting) with 1 plit position.

• DEESplit2f: Performs full split-DEE (conformational splitting) with 2 plit positions.

• EEF1: Manages the EEF1 solvation parameters; EEF1 handles only natural amino acids,
so solvation energies are computed for proteins and ligands (natural amino acids) only, and
not cofactors; Some important notes about assumptions of the EEF1 model are given in the
comments to getSolvationParameters().

• ExpansionQueue: This queue is ordered in terms of increasing f(n) values of the nodes in the
A* expansion tree; only the visible nodes are contained in the queue.

• ExpFunction: Manages the computation of exp(x) for large values of x, using BigDecimal; For
large values of x, the standard Math.exp(x) cannot be used, since it only has double precision;
Implements pow() for integer powers of a BigDecimal number and an approximation to the
natural logarithm of a BigDecimal number.

• ForceField: Interface for different types of force fields (currently not used).

• GenericResidueTemplates: This class reads from a generic residue file that includes element
type, AMBER atom type, limited connectivity, and partial charge. This file is analogous
to AminoAcidTemplates.java; instead of amino acid parameters, parameters for general com-
pounds and nucleic acids (referred to as ‘generic residues’) are read. By matching these generic
residue templates to actual generic residues in a molecule, the corresponding template atom
types and partial charges can be assigned to the matched residues. The format of the input
parameter file is similar to the PARM AMBER datafiles, identical to the all amino94.in.

• KSParser: The main class that sets up and handles the basic OSPREY computation and
related functions. The OSPREY functions include: doDEE - perform DEE/A* redesign (this
includes MinDEE, BD, and BRDEE); genStructDEE - generate structures for a selected set
of the top doDEE conformations; precomputeBackrubs - precompute a list of allowed back-
rubs for each flexible residue position (used by BRDEE); KSMaster - perform K* redesign;
doSinglePartFn - generate (bound or unbound) structures for the K* ensemble of a given
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protein-ligand complex; doResEntropy - use SCMF to compute the residue entropy for each
(non-Pro) residue in a protein.

• KStar: This is the main class for the KStar program; essentially just a wrapper for the
KSParser class.

• MinDEEIntervals: Computes the single and pair interval terms in the MinDEE/BD/BRDEE
criteria. This class is not used for traditional DEE.

• Molecule: Handles functions and data associated with molecules. Handles rotations/translations
of (parts of) molecules. Manages the data associated with a molecule; handles changes to
the molecule (e.g., coordinate changes, deletion or addition of residues, etc.). Determines the
bond information for the molecule.

• MSAStar: Uses A* search for single or multiple mutation sequences simultaneously to re-
turn the minimum-energy conformation; each consecutive run returns the next lowest-energy
conformation, in order.

• MSMinBounds: Performs two different operations, depending on the input parameters: 1)
Applies the Bounds/MinBounds pruning criteria: computes a lower bound on the energy
of all conformations that contain a given rotamer ir, for each rotamer; 2) Computes: (a) a
lower bound on the energy of all conformations that contain a pruned rotamer, and (b) all
conformations that are pruned due to unallowed sterics.

• MutationManager: The MutationManager class maintains a list of mutations to be tested,
maintains their scores, prints a log file, and generally manages the mutations to test.

• OneMutation: Handles the data for a single mutation sequence. Contains the amino acid
identities for the given sequence and can contain the computed score. Implements a method
for comparing two sequences that is used for sorting all sequences with respect to different
criteria.

• ParamSet: Handles reading in and managing parameter/value pairs from the input configu-
ration files.

• PEMHandler: Manages operations on the pairwise energy matrices.

• ProbeStericCheck: Implements a steric check for atom pairs based on the Richardsons’ Probe
approach.

• QueueNode: Handles the data for a single node in the A* queue.

• Residue: Handles functions and data associated with residues.

• RotamerLibrary: This class implements a rotamer library reader. It reads from an input file
that contains rotamer information for amino acid types or other generic residues.

• RotamerSearch: This class provides a variety of tools and search algorithms for doing rotamer-
based searching over molecular conformations. Contains functions for computing the pairwise
energy matrices and for performing DEE/A* and K* (with different types of minimization)
mutation searches. The functions in this class are typically called after the necessary setup
in KSParser.java is performed.
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• RotMatrix: This class implements rotation matricies.

• RyanComparable: Interface for comparing objects.

• RyanQuickSort: This class implements quick sort; sorted objects must implement RyanCom-
parable.

• SamplingEEntries: Handles data storage for elements in the pairwise energy matrices.

• SimpleMinimizer: This class implements a simple energy minimization routine for the side-
chains only. Handles the computation of the Amber dihedral energy penalties (for minimizing
away from the initial rotamer dihedrals). Additionally there is a special residue, the ligand,
that can translate and globally rotate.

• StericCheck: Implements functions for checking the steric overlap for specified parts of a given
structure at different stages of the A* expansion of the conformation tree.

• Strand: Handles functions and data associated with strands.

• StrandRotamers: This class handles rotamer assignment and maintenance for a given strand.
Performs rotamer swaps and amino acid mutations fot this strand.

• VolModule: This class computes a crude molecular volume for a specified molecule.
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