
RDC-ANALYTIC
User Manual

Version 1.0

Chittaranjan Tripathy and Bruce R. Donald

Copyright c© 2001-2010 Bruce Donald Lab, Duke University

Contents

1 Introduction 3

2 License Information 3

3 Citation Requirements 4

4 Installation 5

5 Configurations, Input and Output 5
5.1 File Organization of rdc-analytic . 6
5.2 Input Format . 7
5.3 Output Format . 10

6 Examples 10

2

1 Introduction

rdc-analytic is a suite of programs for high-resolution protein backbone fold determination from
residual dipolar couplings (RDCs) (only two RDCs per residue are required) in one alignment
medium, and a sparse set of nuclear Overhauser effect (NOE) data. rdc-analytic is developed
in the lab of Prof. Bruce R. Donald at Duke University.

In an earlier prototype of our software the name rdc-exact was used (since low-degree poly-
nomial equations derived from RDC equations can be solved exactly in a mathematical sense).
This later version is named rdc-analytic to emphasize the analytic (exact) solutions to the RDC
equations, and to avoid the confusion that this software cannot (of course) guarantee biological
“exactness”.

rdc-analytic is free software and can be redistributed and/or modified under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation, either
version 3 of the License, or (optionally) any later version. rdc-analytic is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. For full licensing details, including citation requirements
for the software, please refer to Section 2 and Section 3, respectively. This information can also be
found in the document license.pdf enclosed with this package distribution.

rdc-analytic is designed to compute high-resolution global fold of proteins from RDCs in
one alignment medium. It combines analytic solutions to RDC equations with a systematic depth-
first search based technique to determine the structures of secondary structure elements (SSEs) of a
protein and their relative orientations with respect to a global reference frame. The SSEs computed
by rdc-analytic can be packed using a sparse set of NOEs to output the global fold of a protein.
Although rdc-analytic uses at least two RDCs (one N-HN and one Cα-Hα RDC) per residue, we
expect it to perform well even when only approximately 90% of the N-HN and Cα-Hα RDCs are
present. For the cases with less RDC data some heuristic techniques can be employed to compute
the structure but the results may be less accurate since the system with less data becomes highly
under-determined.

Currently, rdc-analytic is the first module in the rdc-Panda high-resolution protein struc-
ture determination software from our lab [1]. We highly recommend the users to use rdc-Panda[1]
with which rdc-analytic comes as a built-in package. This document contains license information,
citations required upon using the software, and the details of how to install and use rdc-analytic.

2 License Information

The source header below must be included in any modification or extension of the source code of
rdc-analytic.

Source Header

This file is part of RDC-ANALYTIC.

RDC-ANALYTIC Protein Backbone Structure Determination Software Version 1.0

Copyright (C) 2001-2009 Bruce Donald Lab, Duke University

3

RDC-ANALYTIC is free software; you can redistribute it and/or modify it under

the terms of the GNU Lesser General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option) any

later version.

RDC-ANALYTIC is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more

details.

You should have received a copy of the GNU Lesser General Public License

along with this library; if not, see:

<http://www.gnu.org/licenses/>.

There are additional restrictions imposed on the use and distribution of this

open-source code, including: (A) this header must be included in any

modification or extension of the code; (B) you are required to cite our

papers in any publications that use this code. The citation for the various

different modules of our software, together with a complete list of

requirements and restrictions are found in the document license.pdf enclosed

with this distribution.

Contact Info:

Bruce R. Donald

Duke University

Department of Computer Science

Levine Science Research Center (LSRC)

Durham, NC 27708-0129

USA

email: www.cs.duke.edu/brd/

<signature of Bruce Donald>, 01 December, 2009

Bruce R. Donald, Professor of Computer Science and Biochemistry

3 Citation Requirements

Any publications, grant applications, or patents that use rdc-analytic must state that rdc-
analytic was used, with a sentence such as “We used the open-source rdc-analytic software
[Ref] to compute...”

In addition, you are required to cite our papers in any publications that use this code. The
primary citation corresponding to this software is [1]. The papers that can be cited based-on or
related-to this software are listed below.

[1] Jianyang Zeng, Jeffrey Boyles, Chittaranjan Tripathy, Lincong Wang, Anthony Yan, Pei Zhou,
and Bruce Randall Donald. High-resolution protein structure determination starting with a

4

global fold calculated from exact solutions to the RDC equations. Journal of Biomolecular
NMR, 45(3):265–281, 2009.

[2] Bruce R. Donald and Jeffrey Martin. Automated NMR Assignment and Protein Structure De-
termination using Sparse Dipolar Coupling Constraints. Progress in Nuclear Magnetic Resonance
Spectroscopy, 55(2):101–127, 2009.

[3] Lincong Wang, Ramgopal R. Mettu, and Bruce R. Donald. A Polynomial-Time Algorithm for
De Novo Protein Backbone Structure Determination from NMR Data. Journal of Computational
Biology, 13(7):1276–1288, 2006.

[4] Lincong Wang and Bruce Randall Donald. Analysis of a Systematic Search-Based Algorithm for
Determining Protein Backbone Structure from a Minimal Number of Residual Dipolar Couplings.
In Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB04),
Stanford CA, pages 319–330, 2004.

4 Installation

Since rdc-analytic is written in Java, it requires JDK 1.6. Henceforth, it is assumed that JDK
1.6 has already been installed. To install rdc-analytic

1. Unpack the tar file in a directory of your choice. Then go to the (sub)directory that contains
the directory structure shown in Figure 1.

2. The Java files are in the directory ./src/analytic/, and the class files (after compilation)
will be in the following directory: ./analytic/. To compile the Java files type the following
command:

javac -d . -classpath ./javax/vecmath:/Jampack/Jampack:. ./src/analytic/*.java

3. This completes installation, and rdc-analytic is ready for use.

4. To run the program type the following command:

java analytic/RDCAnalytic

5 Configurations, Input and Output

The inputs to rdc-analytic are (1) N-HN and Cα-Hα RDCs in one medium, and (2) secondary
structure element specification (helix or sheet along with their boundaries), and (3) a sparse set
of NOEs to pack the β-strands into β-sheets, and to pack the secondary structure elements (helix
and/or sheet) to obtain the global fold. While packing β-strands into β-sheets is done by rdc-
analytic, for packing β-sheets and α-helices after they are computed, we recommend using the
Packer module of rdc-Panda[1]. rdc-analytic also comes with a packer which can be invoked
by typing

java analytic/Packer <arguments>

Help on its usage can be found by typing
java analytic/Packer -help

5

5.1 File Organization of rdc-analytic

The directory structure of rdc-analytic is shown in Figure 1.

Figure 1: Directory structure of rdc-analytic.

Henceforth, we denote the main working directory (mainDirectory in Figure 1) for rdc-
analytic by a period (.). The Java source files are located in the folder ./src/analytic/.
The Java binary class files are in the folder ./analytic/. The file dirArch.txt specifies the above
directory architecture, and the program uses this file to understand the input file organization.
For a particular protein, when the input directory is to be specified, the user just needs to make
modification (edit xxxx part) in one line in this file:

inputDirectory: input files xxxx

where xxxx is the user-specified part of the name of the input directory (see also Figure 1). This
instructs rdc-analytic to read from the correct set of input files.

The directory ./mytoppar/ contains the information about the geometry of the protein, the
RDC gyromagnetic ratios, and a set of constants for the program. The files in this directory need
not be changed.

The directory ./input files xxxx/ contains two subdirectories (see Figure 1). The (sub)directory
input data files/ contains three files noe.txt, rdc medium1.txt, and seq.txt, which specify
the input data. The (sub)directory input parameter files/) contains the files parameter.txt

and sse.txt, which specify the user-supplied parameters and the secondary structure specifications.
The formats of the files are described below.

6

5.2 Input Format

noe.txt

This file contains the NOEs to be used to pack the β-strands into β-sheets. Only a sparse set of
unambiguous NOEs (about 4 NOEs per pair or strands) are needed to pack the β-strands into
β-sheets. These NOEs can be obtained from chemical shift analysis of small proteins, or Isoleucine-
Leucine-Valine methyl labeling strategies used for larger proteins. Although backbone NOEs are
preferred, rdc-analytic can use side-chain NOEs and can still pack the strands reliably. xplor
format for NOEs is used, e.g.,

// example NOE

assign ((resid 5 and name HG2#)) ((resid 67 and name HN)) 3.555 3.555 0.876 !

The program requires that the interacting proton names conform with the latest PDB naming
convention. A line comment in the file noe.txt starts with // as shown above.

rdc medium1.txt

This file contains the RDCs in xplor format, e.g.,
assign (resid 500 and name OO)

(resid 500 and name Z)

(resid 500 and name X)

(resid 500 and name Y)

(resid 15 and name N)

(resid 15 and name HN) -10.5000 0.0000 0.0000

The N-HN and Cα-Hα RDCs are read from this file.

seq.txt

This file specifies the amino acid sequence of the protein in the format
residueNumber threeLetterIUPACAminoAcidName.

sse.txt

This file specifies the secondary structure boundaries and types, and the topology of β-sheets. To
specify a helix between the residue 23 and 33 one needs to type the following

@helix(23, 33, 4)

The tag @helix is used to specify a helix, and the boundaries are specified as shown above.
Each secondary structure element (helix or strand) is given a user-defined unique serial number
(for example, the number 4 above). Similarly, to specify a strand between residue 2 to 7 with
user-defined unique serial number 3 one needs to type the following:

@strand(2, 7, 3)

To specify the helix boundaries that will be used to bootstrap the alignment tensor, one needs
to type the following:

@computeAlignmentTensorUsing(@helix(23, 33, 4))

It is required that when specifying the helix and strand boundaries, the N-HN RDC for the first
residue of the helix/strand must be present.

7

A β-sheet between three strands with serial number 2, 3 and 5 with 2 and 3 being antiparalled, 2
and 5 being parallel with 2 being the middle strand (this information can be obtained by analyzing
the unambiguous NOEs obtained from chemicah shifts or from ILV-Methyl selective labeling) is
specified by the following line:

@sheet((3, 2, antiparallel) (2, 5, parallel))

Since the strands are computed in the order specified in the β-sheet specification from left-to-
right (e.g., in the example above the computation order of strands is 3, 2 and 5) care must be
taken to specify the β-sheet so that the left-to-right evaluation order is meaningful. That is, in the
example, for the strand 5 to be computed the pre-condition is that the strands with serial numbers
3 and then 2 have already been computed. For a β-sheet with 5 strands numbered from 11 to 15
(say), with strand i+1 being adjacent to strand i (for 11 ≤ i ≤ 14), and strand 12 being the longest
one, we recommend to specify the sheet in a way similar to shown below.

@sheet((12, 13, parallel) (12, 11, antiparallel) (13, 14, antiparallel), (14, 15,

antiparallel))

Here parallel and antiparallel labels depend on the topology of the sheet. Also, we recom-
mend to start from a strand somewhere in the middle of the sheet and grow the sheet by adding
strands on either side. A reason for such a recommendation is that the set of NOEs used for
packing at times don’t provide enough constraints to yield a reasonable β-sheet, so starting from
the middle may help in such situations. Finally, multiple sheets can be specified with @sheet tag
multiple times (one sheet per line).

parameter.txt

The format of parameter.txt is given below.

// Notes:

// (1) numberOfSearchTrees can be set to ’auto’ instead of a positive integer

// (2) RDC scaling factor is also specified in this file

@parametersForAlignmentTensorComputation {

weightForRmsDihedralDeviationTerm = 8.0

numberOfOptimizationsOfPP1 = 2 // an integer

numberOfSearchTrees = auto // an integer

}

@parametersForHelixComputation {

weightForRmsDihedralDeviationTerm = 8.0

numberOfOptimizationsOfPP1 = 2 // an integer

numberOfSearchTrees = auto // an integer

gridResolutionInDegrees = 1.0

}

@parametersForStrandComputation {

weightForRmsDihedralDeviationTerm = 4.0

numberOfOptimizationsOfPP1 = 2 // an integer

numberOfSearchTrees = auto // an integer

8

gridResolutionInDegrees = 2.0

}

// **RDC Scaling Factors**

// The flag scaleRdcTo can be set to one of the values from the following set:

// {scaled, CA_HA, N_HN}. It sets the values of the prefactors (Dmax) for

// the different types of RDCs measured. If the data has already been scaled,

// then use the flag ’scaled’. If the data are to be scaled wrt. CA_HA then set

// the flag to ’CA_HA’, and if the data are to be scaled wrt. N_HN then set the

// flag to ’N_HN’. We recommend to use scaled RDCs for our program or to scale

// RDCs wrt. CA_HA.

scaleRdcTo CA_HA

The scaling method used for RDCs need to be specified as mentioned above. When the
numberOfSearchTrees is set to auto the program picks a suitable integer on behalf of the user;
otherwise, the user can supply a positive integer in the place of auto. The values of other parame-
ters can be changed, but we suggest not to change them as they can have significant effect on the
performance of the program and accuracy of the output.

In addition, the user can supply a few optional parameters. We recommend that these param-
eters be used with proper understanding of their effect on the computation, and when there is an
absolute need to change their default values. It is not necessary to specify (or to provide a value
for) these parameters, as the absence of specification of these parameters is handled automatically
by the program. We list the parameters below.

• testIfRdcsExistForBoundaryResiduesOfSse: The usage of this boolean flag is:

testIfRdcsExistForBoundaryResiduesOfSse true/false

The default value for this flag is true. If set to true then it checks for if there exists RDCs
for the boundary residues; otherwise, the checking is skipped allowing the user specify a SSE
boundary for which there need not be any data present. The user must be careful to make
such a decision.

• enforceRdcErrorIntervalEarly: The usage of this boolean flag is:

enforceRdcErrorIntervalEarly true/false

The default value for this flag is false. If set to true then it enforces a narrow RDC error
interval; otherwise, it allows the program to choose the value appropriately. The user must
be careful to make such a decision. If there are long helices with lots of missing RDCs, then
the user may try setting this flag to true.

• computeAlignmentTensor: The usage of this boolean flag is:

computeAlignmentTensor true/false

The default value of this flag is true. If set to true and if the alignment tensor specification
is provided in the file sse.txt then the program estimates the alignment tensor. If this flag
is set to false then the user must provide the values for the alignment tensors in the file

9

parameter.txt. For example, the alignment tensor specification in the file parameter.txt

will look like

...

...

...
computeAlignmentTensor false

Syy 14.3

Szz 24.9

...

...

where the alignment tensor components are Syy and Szz, respectively. Note that if the flag
computeAlignmentTensor is set to true then even if Syy and Szz are specified, the program
discards these values and computes the alignment tensor.

5.3 Output Format

All computed secondary structure elements are stored in the file bestSetOfFragments.txt. The
file bestFragment.txt stores the best conformation of the last secondary structure element (SSE)
computed. Also, for each helix or β-sheet for convenience separate files are written, e.g., for
ubiquitin helix1.pdb and sheet1.pdb are generated. The file at.pdb holds the coordinates of
the helix computed during the alignment tensor estimation. The file saupeList.txt contains
the alignment tensor components. In addition, two more files that are generated in the working
directory, viz., the file mostRecentFragment.pdb that stores the most recent solution fragment
and the file phiPsiSolutionSets.txt that stores the phi-psi values and a solution counter for the
last SSE computed. These two files are simple log files generated as side-effect, therefore, can be
discarded.

The output files of interest are helix*.pdb and sheet*.pdb which are then supplied to the
Packer [1] module along with a sparse set of NOEs for packing to obtain the global fold.

6 Examples

This distribution comes with examples of how to prepare the input files and run rdc-analytic on
two proteins, namely, ubiquitin and FF2. The input files are prepared as explained in Section 5.2.
./input files 1d3z/ contains the input files for ubiquitin and ./input files 2kiq/ contains the
input files for FF2. Before running the test for ubiquitin, the input directory input files 1d3z

must be specified in dirArch.txt as explained in Section 5.1 so that correct set of input files
are read by rdc-analytic. Similarly, before running the test for FF2, the input directory
input files 2kiq must be specified in dirArch.txt. Since rdc-analytic is fully automated,
all you need is to type the following command:

java analytic/RDCAnalytic

to run rdc-analytic.

10

	Introduction
	License Information
	Citation Requirements
	Installation
	Configurations, Input and Output
	File Organization of rdc-analytic
	Input Format
	Output Format

	Examples

