Problem 1: Regular Languages
Fix constant integers $a, b > 0$, and binary strings u and w.

(1a) Let L be the set of strings $\{0^{an}1^{bm}w | n > 0, m > 0\}$. Show L is a regular language.

(1b) Let L' be the set of strings $\{0^{an}1^{bn}w | n > 0\}$. Show L' is not regular. Hint: use the pumping lemma.

(1c) Show that if a Turing Machine accepts language L', then it requires $\Omega(\log n)$ space.
Problem 2: Decidability
Suppose L is a language over alphabet Σ that is recognized by Turing Machine M. Also suppose there is a recursive reduction from L to $\{w | w \in \Sigma^* \land w \not\in L\}$. Show that L is decidable.
Problem 3: Undecidability
Consider the problem: given a 2-tape Turing Machine: does it ever write a non-blank symbol on the second tape? Show this problem is undecidable. Hint: Give a reduction from the Halting Problem for 1-headed Turing Machines.
Problem 4: NP Completeness

A clique of a graph is a set of vertices all pairs of which have an edge between them. The CLIQUE problem is given a graph G a number k, determine if there is a clique of k vertices in the graph G. The HALF-CLIQUE problem is given a graph G with an even number of vertices, does there exist a clique of G consisting of exactly half the nodes of G? Show the HALF-CLIQUE problem is NP-complete. Hint: You can assume the CLIQUE problem is NP-complete.
Problem 5: TM Speedup

Show that for any constant $c > 1$, given deterministic Turing Machine M which on input of length n has time bound $T(n)$, there is another faster Turing Machine M' with time bound $O(n) + T(n)/c$ which accepts the same language as M.

(5a) First describe precisely the Turing Machine M, including its sets of input symbols Σ, tape symbols and transition function.

(5b) Then describe precisely the Turing Machine M', including its set of input symbols (also Σ), tape symbols and transition function. Hint: implement the speed-up by careful design of the new tape symbols and transition function.

(5c) Give a careful proof of the simulation of M by M'.
Problem 6: Restricted Post Correspondence Problems

The \textit{Post Correspondence Problem (PCP)} problem is given alphabet Σ and two lists A and B of strings over Σ, where $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$, find i_1, i_2, \ldots, i_k such that $a_{i_1} a_{i_2} \ldots a_{i_k} = b_{i_1} b_{i_2} \ldots b_{i_k}$. You can assume the PCP problem as just stated is undecidable.

(5a) The \textit{binary PCP} problem is the PCP problem restricted to where $\Sigma=\{0,1\}$. Show the binary PCP problem is undecidable for binary strings. Hint: Give a recursive reduction from the PCP problem to the binary PCP problem.

(5b) The \textit{unary PCP} problem is the PCP problem restricted to where $\Sigma=\{1\}$. Show the unary PCP problem is decidable. Hint: You can assume the problem of solving systems of linear equations over the integers is decidable.
Problem 7: K-complexity

Let the K-complexity of a recursive language L be the minimum number of bits required to represent a Turing Machine that accepts the language L. Show that it is undecidable given a Turing Machine M, to determine the K-complexity of the language of strings accepted by M. Hint: The Emptiness problem (is language of a Turing Machine empty?) is undecidable. Give a recursive reduction from the Emptiness problem for Turing Machines to the problem of determining the K-complexity.