Answer all the questions. Give a correctness proof and run time analysis for all the algorithms.
Problem 1: [10pts] Given two sorted lists A and B, each represented as an array, and a positive integer k, describe an $O(\log k)$ time algorithm for computing the k-th smallest element in $A \cup B$.
Problem 2: [15pts] Let \(S = (x_1, \ldots, x_n) \) be a sequence of \(n \) real numbers. Given a pair \(i, j \) such that \(1 \leq i \leq j \leq n \), the range-max query asks to return \(\max_{i \leq k \leq j} x_k \).

Suppose a rooted tree \(T \) with \(n \) nodes can be preprocessed into a data structure of size \(O(n) \) so that for any two nodes of \(T \), their lowest common ancestor can be computed in \(O(\alpha(n)) \) time, where \(\alpha(n) \) is the inverse Ackermann function.

Using this data structure, show that \(S \) can be preprocessed into a data structure of size \(O(n) \) so that a range-max query can be answered in \(O(\alpha(n)) \) time.
Problem 3: [20pts] For any edge e in any graph $G = (V, E)$, let $G \setminus e$ denote the graph obtained by deleting e from G. Let $|V| = n$ and $|E| = m$.

Suppose you are given a directed graph G, in which the shortest path from vertex u to vertex v passes through all vertices in G. Give an $O(m \log n)$-time algorithm to compute the shortest path from u to v in $G \setminus e$, for every edge e of G. The algorithm should output a set of $|E|$ shortest-path distances, one for each edge of the input graph. All edge weights are non-negative. (**Hint:** If an edge of the original shortest path is deleted, how do the old and new shortest paths overlap?)

Extra credit [5pts]: Assuming that the shortest path from u to v is given, show that the above problem can be solved in $O(m)$ time.
Problem 4: [17+8pts]

(a) Suppose we are given a set L of n line segments in the plane, where each segment has one endpoint on the line $y = 0$ and one endpoint on the line $y = 1$, and all $2n$ endpoints are distinct. Describe an $O(n^2)$-time algorithm to compute the largest subset of L in which no pair of segments intersects. (Hint: Use dynamic programming.)

(b) Now suppose the endpoints of segments in L lie on the unit circle $x^2 + y^2 = 1$, and all $2n$ endpoints are distinct. Modify your previous algorithm to compute in $O(n^2)$ time the largest subset of L in which no pair of segments intersects.
Problem 5: [20+10pts] Let $G = (V, E)$ be a directed graph, with $|V| = n$ and $|E| = m$. The minimum equivalent graph of G is a smallest subgraph $H = (V, E')$ of G such that for any two vertices $u, v \in V$, there is a path from u to v in H if and only if there is a path from u to v in G.

(a) If G is acyclic, then show that the minimum equivalent graph of G is unique and can be computed in $O(mn)$ time.

(b) Is there a polynomial-time algorithm to compute a minimum equivalent graph if G has cycles?