
m-
ms in
sed).
ou

a

,
ilt.

u get
om-
show

them

 to

ener-

he
or its
Programming Assignment #1

CPS 210
Due Date: 2/10 at 11:59 PM

 (Available inpostscript.)

This is a warm-up assignment to exercise the Unix system call interface and your C progra
ming skills. Since the Unix interface is reasonably standard, you may use any Unix syste
the department to write and debug your programs (but tell us which types of systems you u
You are welcome to use trusted ARI machines (Suns and Alphas) for this assignment. If y
wish, you may do this project in groups of two.

You will turn in all of your code in a single (one-level) directory. Your directory will include
single makefile to build your programs usingmake or gmake. Just typingmake with no argu-
ments should build all of your code. Your makefile should also include aclean directive to
remove all of your object files, and ascratch directive to remove all files (objects, executables
and archives) produced by the build. You will turn in your directory with all objects fully bu
Please include aReadme file briefly describing your programs. Directions for turning in your
code will be provided before the due date.

Each program will be a few screens of code. Your programs should not have any bugs. Yo
to decide what is a “bug” and what is a “feature”, but explain any restrictions in the block c
ment at the top of each program (note: dumping core is always a bug). Your code should
good Unix programming style. For example, all system call errors should be detected and
reported withperror in a format that explains which operation failed and why.

Program 1: A Shell Game

Write aminishell program that executes specified programs as child processes, connecting
with a pipeline. The command syntax isminishell <prog1> <prog2> <prog3>, where the
“progs” are the executable file names of programs that read from standard input and write
standard output. Your shell will set up the first process to read from minishell’sstdin (e.g., the
terminal), and the last process to write its output to minishell’sstdout. Any standard Unix pro-
gram should run fine under your shell, even if it uses environment variables.

You will use the Unix mechanisms for process groups and job control to handle keyboard-g
ated signals properly for your child processes. If you runminishell with itsstdin bound to the
keyboard, then typingctrl-c or ctrl-z should interrupt or stop all the child processes, but not t
minishell. To do this, your minishell program will need to create a separate process group f
children, and make the process group theforegroundprocess group for the terminal.Note: your
minishell need not and should not declare signal handlers forctrl-c or ctrl-z .
(1)

1/23/99 9:35 PM

proj1.ps

eates
 chil-

, and

In par-
nix

ave

ent
antics
a
ple;
ish to

s

erfor-

d via

ap
ram
e

or-
Your minishell should print out the process IDs and program names for its children as it cr
them and initializes them, and it should print the process IDs and exit status values as the
dren exit. If child processes pause (e.g., due toctrl-z), the minishell should print the process IDs
of the stopped processes and wait for them to resume (you may need to use thekill command
from a separate window to resume them with a SIGCONT signal to the process group).

To make your job easier, we have put some sample code for fork/wait, pipes, foregrounding
other related Unix stuff in the directory/usr/project/courses/cps210/sample_progs. These pro-
grams are pretty solid, but they are not guaranteed to do the right thing on every system.
ticular, the details of handling signals are different on Solaris and other SystemV-flavored U
systems. We recommend that you use BSD-flavored systems, e.g., Digital Unix or
FreeBSD(trusted machines do not yet exist for this assignment). The sample programs h
been tested under Digital Unix.

Program 2: M-Pipes (more pipes)

In this assignment you will implement pipes utilizing the mmap facility. You should implem
the following calls, m_pipe, m_read, m_write, and m_close. These calls should have sem
similar to their ordinary pipe equivalents. I.e. your calls should return error codes, and dat
should not be corrupt and should be delivered in order. The implementation should be sim
you only have to worry about setting up a pipe between two processes. Issues you may w
consider: What sort of synchronization will you need? Do you have to worry about COW’
(copy on writes)?

After you get that working, you should write a small test program, calledpiper, to evaluate your

pipe implementation against the pipes you used in program 1. Then write about it. What p

mance differences did you notice and why? What are the key differences and similarities

between your m_pipes and ordinary pipes?

Program 3: Heap Manager

Implement a heap manager consisting of your own versions ofmalloc andfree, to replace the
versions provided in the standard library. The virtual memory for your heap can be obtaine
thesbrk system call. The heap manager should self-initialize the first timemalloc is called.

Unlike the standardmalloc andfree, your heap manager may assume that the calling program
will use a relatively small number of different heap block sizes, and that it will use each he
block size a large number of times. In other words, you may assume that the calling prog
will commonly use a few different block sizes, but that it has the liberty of allocating any siz
block if it so desires.

Include a test program calledheap in a separate source file.Heap should treat each allocated
heap block as an array oflong, and read and write each heap block as necessary to test for c
(2)

1/23/99 9:35 PM

ting

.
er in
ke?

ehav-
rupt data or bad pointers.Heap should take as arguments the heap block sizes to use for tes
the heap.

Write a one-page evaluation of the choices you made in the design of your heap manager
Explain why and how your heap manager will perform better than an “ordinary” heap manag
the case where the calling program has the expected behavior. What tradeoffs did you ma
How will your heap manager perform for an application that does not match the expected b
ior? Consider both space and time overheads in your answers.
(3)

1/23/99 9:35 PM

	Programming Assignment #1
	CPS 210
	Due Date: 2/10 at 11:59 PM
	Program 1: A Shell Game
	Program 3: Heap Manager

