
 of
 data
al
basic

y

nts)

eives
rom
in this

data
e

ust be
me
r

ust
t

Programming Assignment 3

CPS 210, Spring 1999
Due Date: 4/29/99 at midnight(on Thursday)

Implement a multi-threaded buffer manager. A similiar facility is used in implementations
file systems, databases, and virtual memory. The buffer manager provides a cache of 4K
blocks uniquely named by integer IDs. These buffers are allocated from a fixed-size glob
array of 4K blocks in the process virtual address space. The buffer manager supports five
operations.

Buffer* GetBlock (BlockID bid) --Fetch the requested block into the cache if it is not alread
resident. Return the buffer for use by the caller. Buffers are returned locked.

void ReleaseBlock (Buffer* bp) -- Inform the buffer manager that the caller no longer needs
the specified buffer. The buffer should be locked when ReleaseBlock is called.

Buffer.SetDirty() --Mark a buffer as dirty, forcing a writeback when evicted from the cache.
Buffer.Lock () --Request exclusive access to a buffer (e.g., to examine or modify its conte.
Buffer.Unlock () --Release the lock on a buffer.

The block cache contains a fixed number of blocks. If the cache is full and the system rec
aGetBlock for a block that is not in the cache, then some other block must be discarded f
the cache so that its buffer can be used to satisfy the request. Any block can be replaced
fashion, but only if it is not in use by any thread (e.g., all calls toGetBlock for that block have
been paired with a matchingReleaseBlock).

TheSetDirtymethod allows updates to data in the buffer cache.SetDirtyis called by the client
(e.g., the test program) to indicate that a buffer has been modified. For example, to modify
in a file, the client would acquire a buffer for the block to be modified (possibly reading th
block into the cache), lock the buffer, modify its contents in place, mark it dirty withSetDirty,
and release it. The client may modify the buffer or callSetDirtyonly when the buffer is locked.

The buffer cache connects to an underlying I/O system through external proceduresFillBlock
andPushBlocksupplied by the test program.FillBlock must be called fromGetBlockto initial-
ize a buffer given its block ID. The signature forPushBlock is the same asFillBlock. Your
buffer manager must callPushBlock to “clean” a dirty block before recycling the buffer that
holds it. The buffer must be locked whilePushBlock is cleaning it, to ensure that no other
thread modifies the block or buffer while it is being written out.

Your solution must guarantee that each block appears at most once in the cache, and it m
deadlock-free. Your buffer manager should also be robust. In particular, you should assu
that the time forFillBlock or PushBlock to complete is unbounded. For example, if the buffe
manager were used in a network file system,FillBlock or PushBlock could require network
communication with a host or process that has failed. In this case, the buffer manager m
block any thread waiting for the particular block or buffer that is being filled or pushed, bu
other operations should proceed unimpeded. For example, it is acceptable for aGetBlock to
(1)

gram.
ving
ion-
tand

imple-

 the

is

d the
test
wait for aPushBlock to complete, but only if theGetBlock requests exactly the block that is
currently being pushed.

Mechanics

This semester we are publishing basic code for the buffer manager as well as the test pro
The goal is to save you the grunt work of implementing the whole thing from scratch, lea
you more time for your projects. The sample code was derived by deleting synchronizat
related code from the solution. As with the sthreads assignment, you will need to unders
the buffer cache code and reason through various synchronization scenarios in order to
ment the synchronization correctly.

The sample code can be found in/usr/project/courses/cps210/src/cache; the test program is in
the same subdirectory. If you’ve copied over the whole tree on previous assignments it’s
same code. Rules for building usinggenmake are the same as for the last assignment. Your
solution code should work ontwister(the multiprocessor Alpha) as in the last assignment. Th
time we will be using the OS-supportedpthreads rather thansthreads. This should save you
from problems stemming from bugs in your code from the last assignment.

Please write up a one page description of how you synchronized your buffer manager an
performance implications of your solution. Your solution should pass all of the tests in the
program; make sure you test your solution adequately.
Programming Assignment 3 4/11/99 4:56 PM 2

	Programming Assignment 3
	CPS 210, Spring 1999
	Due Date: 4/29/99 at midnight(on Thursday)
	Buffer* GetBlock (BlockID bid) -- Fetch the requested block into the cache if it is not already r...
	void ReleaseBlock (Buffer* bp) -- Inform the buffer manager that the caller no longer needs the s...
	Buffer.SetDirty() -- Mark a buffer as dirty, forcing a writeback when evicted from the cache.
	Buffer.Lock () -- Request exclusive access to a buffer (e.g., to examine or modify its contents).
	Buffer.Unlock () -- Release the lock on a buffer.
	Mechanics

