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Abstract  

A method is presented for representing botanical trees, given 
three-dimensional points and connections~ Limbs are modeled 
as generalized cylinders whose axes are space curves that 
interpolate the points A free-form sur~ce connects branching 
limbs. "'Blobby'" techniques are used to model the tree trunk 
as a series of  non-circular cross sections. Bark is simulated 
with a bump map digitized from real world bark; leaves are 
textures mapped onto simple surface~ 

CR Categories and Subject Descriptors: 1.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling - 
curve, surface, solid and object representations. 

Keywords and Phrases: modeling, interpolation, space curve, 
spline, ramiform, blobby surface, generalized cylinder, texture 
map, bump map, 

1. Introduct ion 

Past efforts at computer generation of trees generally have 
focused on branching patterns [2, 7, 16, 21, 27, 28]; limbs and 
leaves were constructed from basic primitives [16, 21, 27] or 
ignored altogether by using mapping techniques [14]. The 
trees usually lacked detail when closely inspected. 

The present work seeks to model trees with sufficient realism 
that they may be the subject of animation, rather than simple 
elements of  the landscape. To accomplish this, the model 
should have a well-defined structure; beneath the bark the 
limb should be smooth: leaves should be properly attached to 
twigs. These requirements will be discussed in terms of a 
polygonal model, which is desired because of its generality. 
Bark and leaf detail are added using mapping techniques. 

*Current address: Xerox PARC, Palo Alto, California. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Beyond being an aesthetic object to model, a tree provides a 
useful test of a graphics system. The need for smooth surfaces, 
the interesting topology at a branch point, and various 
mapping constraints all place demands upon the modeling 
process. The polygonal resolution of the model is given as 
view dependent, and this places a demand on the animation 
p rocess. 

2. The Tree  S k e l e t o n  

The limbs of a tree may be specified simply as a list of 
three-dimensional points and a list of connections ("limbs") 
between those points. The lists accommodate an arbitrary 
topology ("branching pattern") subject to these conditions: all 
points must be connected, a point may have at most one 
incoming limb, and one and only one point has no incoming 
limb. This format serves equally well when procedurally 
generating a branching pattern or when measuring an existing 
one. 

The branching pattern seen in Figure 1 was generated 
recursively. Parameters such as number of branches, 
branching angles, and length, radius, and taper of a branch 
were assigned stochastically from ranges of values that changed 
according to the developing geometry of  the tree. 

Any representation of  the branching pattern is a "tree 
skeleton." The simplest is a drawing with straight lines, but 
the resulting appearance is unnatural (Figure 1, left). Trees 
are perhaps the strongest structures in living nature: each limb 
is a cantilever beam for which the bending moment and, 
hence, the deflection, increase smoothly towards the support 
point [12]. Any sudden change in direction of the limb would 
result in a discontinuity of  the rate of  change in the bending 
moment, introducing stress. 

Continuity of direction at fixed points is a well-known property 
of the interpolating spline (Figure 1, righ0. The cubic spline, 
in particular, serves well as a tree skeleton because it has a 
continuous second derivative ("C2 continuity"), which will be 
shown useful in constructing the limb surface. 

Specifically, a limb consisting of n connections of n + /  data 
points will be interpolated by n spline segments. Not all 
cubic, interpolating splines exhibit C2 continuity at the 
interpolated points; the popular Catmull-Rom, for example, 
is CI continuous at these points [3]. 
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Rogers and Adams [24] provide a method for computing an 
interpolating spline that is C2 continuous internally as well as 
at the data points. Their method maximizes curve smoothness 
by adjusting the laarameterization of  each segment according 
to the distance between data points. A tangent at each of  the 
data points is computed. 

Because the tree skeleton is defined by interpolated points, 
conventional control points are not used to manipulate the 
splines. Instead, each limb is represented by the coefficients 
of  the cubic polynomials that define the spline. These 
coefficients are directly determined from the positional and 
tangential information at the data points [13]. 

Figure 2. 
Several spline segments interpolate the data 

points (asterisks) with C2 continuity. A strobe 
captures a disk as it passes along the curve. 

Figure !. 
Data points interpolated by 

straight lines (left) and by splines (fight). 

3. The Limb  Surface 

Agin [1] defines a generalized cylinder as a space curve (a 
class of curves including the spline) and a cross sectional 
contour perpendicular to the curve. The surface of a tree 
limb, then, may be considered a generalized cylinder with a 
circular cross section ("disk") of varying radii (Figure 2). To 
polygonize the surface, a finite number (the "'axial resolution") 
of  cross sections are evaluated along the curve and connected 
together. Each cross section consists of  a finite number (the 
"circumferential resolution") of points. 

To prevent undesired twisting of consecutive disks, each one 
is oriented by two vectors, the "principal normal," N, and the 
"'binormal,'" B. The principal normal is the unit length 
curvature vector, K, which Barsky gives [4] as: 

K = (TXAXT)/ ITI  4, (la) 

where A is the acceleration vector and T is the tangent vector. 
A and T are computed using conventional techniques [15], 
and B is simply NXT. K may also be evaluated as: 

K = (uA-(A*T)T) /u 3/2, where u = T.T.  (lb) 

The vectors T, N, and B are known collectively as the "Frenet 
frame" [11]. Unfortunately, the Frenet frame cannot be 
computed at points where the acceleration is zero (such as at 
inflection points or along straight line segments). Various 
approximations, such as one presented by Shani [26], overcome 
this limitation. 

An efficient means for computing a point D on the disk is to 
pre-compute a circle centered at the origin and, for any point 
P on the curve, transform the circle such that it is centered 
on P and lies in the plane defined by the principal normal 
and binormal. Thus, 

D = (Nxx+Bxy+Px, Nyx+Byy+Py,  Nzx+Bzy+Pz),  (2) 

where (x,y) is a point on the pre-computed circle. P is 
evaluated conventionally [15], 

The Frenet frame and resulting polygonization are illustrated 
in Figure 3. Tangents, principal normals, and binormals are 
shown in black, green and red, respectively. The white dots 
represent the pre-computed circle. The axial and 
circumferential resolutions are 10 and 8, respectively. 

Figure 3. 
The Frenet frame at parametrically 

equal distances along a curve. 
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4. Tension 

The tension of a spline may be adjusted by scaling the tangent 
at an interpolated point [4, 17]. This is useful to stiffen part 
or all of the tree skeleton, or to increase the angularity of 
branching for smaller, non-supporting limbs. 

Scaling the tangent, however, creates a discontinuity in the 
second derivative at the interpolated point. Barsky 
distinguishes between derivative and geometric continuities, 
the latter consisting of  continuity in position, tangency, and 
curvature, not acceleration. Continuity of curvature (and, thus, 
of the Frenet frame) is maintained upon scaling tangents, 
provided: 

fl12Ai-t(1)+f12Ti-l(1) = Ai(0), (3) 

where fit and f12 are beta parameters and i is an index to the 
interpolated points [4]. 

5. Branching 

A "branch point" is the end of a limb that has two or more 
outgoing limbs. The outgoing limb of largest radius (or, if 
the radii are nearly equal, the outgoing limb that diverges 
least from the direction of the incoming limb) is considered 
"'dominant." Initially, the incoming and dominant outgoing 
limbs are interpolated by a spline sequence that is C2 
continuous at the branch point. For each of  the remaining, 
non-dominant outgoing limbs, an interpolating spline is begun 
at the branch point. Figure 4 depicts this ordering for a 
hypothetical tree. 

is increased, which is appropriate for large limbs. If the 
magnitude of the tangent is reduced, the limb becomes less 
curved (Figure 5), which suits smaller limbs and twigs. 

J J J 

Figure 5. 
The non-dominant outgoing limb 

with tension from 1 (left) to 0 (right). 

Clamping the initial acceleration would over-constrain the 
system and so, as suggested by Equation 3, a discontinuity 
results in the principal normal, and is manifested as a twist 
about the tangent at the branch point. To maintain continuity 
of  the Frenet frame, then, it is necessary to add a rotation to 
Equation 2, and to propagate this rotation through the tree. 

6. The Ramiform 

The surface at a point of  bifiarcation is described topologically 
as a triangular prism with 322 symmetry [181. In computational 
geometry, such a form is significant for its branching, and so 
will be referred to as a "ramiform.'" 

There are a number of ways to parameterize a ramiform such 
that its surface is smooth, without self-intersections and 
without gaps. Figures 6 and 7 illustrate one technique 
although others have been published recently [9, 22]. 

Referring to Figure 6, disks are created far enough along the 
outgoing limbs so as not to interpenetrate. A spline (shown 
in yellow), called the "saddle," may be constructed between 
the points of proximity of  the disks, given the easily computed 
gradients at those points. The ramiform shape may be varied 
by changing the distances of  the disks from the branch point 
as well as by scaling the tangents at the saddle endpoints. 

Figure 4. 
Order of  creation of limbs (red, then 

orange, yellow, green, blue, and white). 

As mentioned in Section 2. determining the n spline segments 
interpolating n- , - /da ta  points requires the calculation of n+ 1 
tangents. The solution to this system of equations permits the 
first and last tangents to be set freely ("clamped") [24]. If the 
initial tangent of a non-dominant outgoing limb is clamped to 
that of  the incoming limb, the smoothness from limb to limb 

Figure 6. 
Curve and surface continuity at the branch point B. 
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A two-segment interpolating spline (shown in red) connects 
opposite points on the lower disk to a point on the saddle that 
is farthest from the straight line segment (not shown) 
connecting the saddle endpoints. This point is determined 
readily by recursive subdivision of  the saddle. Additional 
splines are constructed between the upper disks, passing 
through the two-segment spline, and between upper,and lower 
disks, as shown in Figure 7; Points along these splines are 
connected to polygonize the ramiform. 

Indexing polygonal resolution according to projected size (or 
volume) reduces the number of  polygons generated, but 
requires the model be computed for any change in the camera 
to model relationship. 

8. Verisimilar Bark 

In 1978, Lance Williams digitized the surface of  a plaster face 
[30] by x-raying the cast and using the digitized x-ray as a 
depth map. In the case of  tree bark, a piece of actual bark 
was cast (Figure 8) and its x-ray was processed and used as a 
bump map (Figure 9) 

Figure 7. 
Ramiform and parameterization. 

7. Resolution Issues 

A tree tends to maximize its surface area to volume ratio• The 
limbs of a Norway maple, for example, occupy less than 20% 
of the convex volume that encloses the tree, as measured from 
a silhouette template [25). This implies a large polygon to 
pixel ratio, especially for telephoto compositions: conversely, 
if the viewpoint is close to a limb, a large number of  limbs 
will be off-screen. Thus, a method is desired for polygonizing 
limbs that varies the axial and circumferential resolutions 
according to the projection of the limb onto the screen and 
that culls off-screen limb sections. 

Lane gives the maximum distance, M, that a straight line 
approximating a space curve will deviate from the curve as: 

M = [max Ix~2)(t)l + maxl.~2)(t)l + maxlz(2)(t)ll/[b-a]2/8. (4) 

where a point on the curve is (x(t),y(t),z(t)), and t ~ (a,b) [19]. 

Thus, for each curve in the tree model, the acceleration vector 
is transformed to screen space and the axial resolution is 
determined using the above formula. After the transformation, 
the z term is dropped from the evaluation. Because 
acceleration of  a cubic spline is linear, maximum absolute 
values need be evaluated for t only at a and b. 

Circumferential resolution is made proportional to the 
projected size of a disk's radius. For extremely thin projected 
limbs, the model is rendered not as a polygonal solid but as 
a smoothly drawn curve. 

Figure 8. 
Tree bark and plaster casL 

Figure 9. 
Bump map for bark. 

In order that the map seamlessly repeat around a limb, the 
top and bottom rows must be identical, as must be the left 
and fight columns. This was accomplisbed by overlapping 
opposite edges of the map. Artifacts of  this process were 
reduced by separating the map into several bandlimited 
images. For each separation, the merging width was adjusted 
according to the bandwidth, as suggested by Butt [8]. The 
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resulting images were then summed together to produce the 
bump map in Figure 9. 

The mapping itself must be a function of axial and 
circumferential distance along the surface of a limb, otherwise 
a tapered limb would exhibit an undesired compression of 
bark towards its narrow end. Accurate metrics exist for the 
generalized cylinders and for the curves shown on the 
ramiform (Figure 7); distances orthogonal to the curves shown 
on the ramiform are, however, approximated. 

The mapping also must account for the progressive changes 
in bark depth and density as major limbs branch into minor 
limbs or twigs; discontinuities seem to occur at branch points 
of outgoing, non-dominant limbs. 

The techniques of model creation are varied, ranging from 
procedural generation to real-world digitization, The two 
extremes have strengths and weaknesses, but digitization has 
often yielded superior realism. Regardless of the modeling 
method, the power of computer graphics remains in the 
manipulation of the models. 

9. Trunk-like Surfaces 

Roots of a tree generally branch below ground: above ground 
they merge with each other to form a shape not easily 
polygonized as a ramiform. Instead, planar "blobby" 
techniques inspired by Blinn [5] may be used to compute the 
surface [6]. The blobby cross section and curved profile give 
the resulting surface an asymmetric, organic appearance. 

Figure 10 shows a series of planar contours around a tree 
skeleton. Each contour is an equipotential curve surrounding 
the points of intersection of the tree skeleton with the plane 
of the contour. The contours are evenly sampled and surfaces 
between adjacent planar curves are triangulated as described 
by Christiansen [10]. The shaded surface is displayed in Figure 
11. 

Figure I I. 
Trunk and ramiform with bark. 

10. Leaves 

A maple leaf was digitized from a photograph by a video 
camera; the veins were emphasized for dramatic effect, using 
a paint program. The resulting, non-black texture is mapped 
onto a three-polygon structure as shown in Figure 12. The 
structure is hinged along the dashed lines; the degree of 
hinging depends on the strength of a hypothetical wind as 
well as the extent to which the leaf faces the wind. The crease 
at the hinge is not visible if the structure is Phong shaded. 

Figure 12. 
Three-polygon leaf structure. 

Figure I0, 
Contours simulating the irregularity at the base of a tree. 

Figure 13 shows six leaf structures differently transformed to 
make a leaf "configuration." This configuration was measured 
from an actual maple twig and is one of two configurations 
used in the generation of Figures 15 and 16. 

For each limb that does not exceed a given diameter and that 
has no outgoing limbs, a leaf configuration is chosen randomly, 
scaled randomly, and placed at the tip of the limb. The 
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leaf configuration is oriented in the direction of the limb and 
rotated to an angle slightly below horizontal, conforming to 
observed maple leaves. 

The basic structure of the model is the branching generalized 
cylinder. This structure shows promise as a general, body form 
allowing limbs to move without cracks developing between 
them. The analysis of the structure demonstrates the value of 
geometric continuity. 

The use of screen projection to determine the polygonal 
resolution of a model suggests its use in determining the model 
type as well; for example, an extreme close-up could require 
the bark be modeled as a corrugated structure rather than as 
perturbations mapped onto a smooth surface. 

Rendered images of the test tree are presented in Figures 15 
and 16. Shadows were added by a z-buffer based 
post-rendering process [291. 

Figure 13. 
Leaf configuration: plan (top) 

and perspective (bottom) views. 

Three twigs with leaves are shown in Figure 14. The leaves 
that face away from the viewer are shaded with a lighter color 
to simulate the lighter underside of the maple leaf. The stems 
are rendered as unshaded curves defined by the twig tip and 
direction, and the leaf position and direction. 

Figure 15. 
The Mighty Maple. 

Figure 14. 
A twig consisting of limb, stems, and leaves. 

11. Conclusions 

From the methods described, a complex tree model may be 
generated given sparse data. Features such as trunk 
blobbiness, ramiform shape, and leaf angles are parameterized 
and do not require explicit modeling. 

Figure 16. 
Acer Graphics. 
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Trees exist in nature,  and a logical progression from the present  
work is their  portrayal in different  settings and  conditions.  
William Reeves has created some convincing and romantic  
images o f  forests [23]; but  cracked limbs, shriveled leaves, 
knot-holes,  buds,  and snow or  moss covered branches  would 
be new e lements  in the deve lopment  o f  realism in tree images. 

Mandelbrot has suggested that emulation of  nature is its 
celebration [20]. Insofar as emulation of  nature requires its 
study, one is inclined to agree. 
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