
Fast Collision Detection among Multiple Moving Spheres *

Dong Jin Kimt Leonidas J. Guibas$ Sung Yong Shint

Abstarct

This paper presents an event-driven approach that efficiently
detects collisions among multiple moving spheres of uniform
radhs. We divide the space containing the spheres into uni-
form subspaces of cell structure. Each sphere intersecting a
subspace is teated against the others intersecting the same
subspace for possible collisions. We identify three types of
events to detect the sequence of all collisions during our
simulation: collision, entering, and leaving. The first type
of events is due to actual collisions, and the other two types
occur when spheres move from subspace to subspace. By
tracing all such events in the order of their occuring times,
we are able to simulate n moving spheres with proper col-
lision response[l, 5, 10] in O(rzc log n + n. log n) time with
O(n) space after O(n log n) time preprocessing, where n=
and ne are the number of actual collisions and that of enter-
ing and Ieaving events during the simulation, respectively.
Since n, depends on the size of subspaces, we adopt the
collision model from kinetic theory for molecular gas[3] to
determine the subspace size that minimizes simulation time.
Experimental re.dts show that collision detection can be
done in linear time in n over a large range.

1 Introduction

Spheres are widely used in computer graphics and robotics
since they are simple and effective to model a variety of ob-
jects. They can not only represent objects such as atoms,
balls, and sand[91 12, 13, 14, 15] but also be used to ap-
proximate other 3D objects such as desk lamps, piles, and
clumps[7, 11]. Particle systems use spheres to represent
point masses for modeling complex natural phenomena such
as fire, clouds, and water[12, 13, 14, 15]. Molecular graphics
use spheres to describe the behavior of molecules composed
of atoms[6, 8, 16]. Polyhedral objects are approximately rep-
resented by hierarchies of spheres[7, 11]. In order to consider
interactions among spheres in such cases, it is a fundamen-
tal problem to efficiently detect collisions among spheres.
To solve this problem, the number of collision checks must
be minimized[l, 5, 10, 17, 18].

“This work was supported in part by Samsung Advanced In-
stitute of Technology{ project Research on Multimedia Creation
Technology)

tDepartment of Computer Science, Korea Advanced Insti-
tute of Science and Technology, Taejon, Korea 305-701. e-
maii:{djkim, syshin}C4jupiter. kaist.ac.kr

$Computer Science Department, Stanford University, Stan-
ford, USA CA 94305. e-mail: guibsklcs.stanford. edu

In physical simulation of moving 3D objects, collision
checks are done at a sequence of sampled times called time
steps[7, 10, 17, 18]. In order not to miss any collision, the
number of steps are increased, or objects are assumed to
move sufficiently slowly to hit other objects no more than
once between two consecutive time steps[4]. The latter sacri-
fices generality to restrict the domain of simulation. Mean-
while, the former requires heavy computation time. As-
suming that objects are represented as a set of spheres, we
propose an efficient event-driven approach for detecting the
collisions among multiple moving spheres to avoid excessive
collision checks.

In general, the motion of a solid is a mixture of transla-
tion and rotation, which makes it hard to predict an exact
collision. A sphere is extremely simpler in shape than a
general solid, and its motion can be described by transla-
tion only. Due to those nice properties, the collision time
between two spheres is much easier to compute. In some
sense, a simulation of moving spheres may be considered to
be too domain-specific. However, its efficiency makes up for
the loss of generality. The popularity of bounding spheres
and a hierarchy of spheres to approximate a 3D object jus-
tify efficient methods for fast collision checks among spheres.
Moreover, there are a wide variety of applications of particle
modeling for which spheres themselves are massively float-
ing around. The interaction among spheres is important to
support those applications.

2 Algorithms and Analysis

We take an event-driven approach instead of time-consuming
collision check at every time step. In order to localize col-
lision checks, we decompose the space containing moving
spheres into a set of uniform subspacw of cell structure.
We keep track of the path of every moving sphere and the
list of spheres intersecting each subapace. Those paths and
lists are changed when a pair of spheres collide and when
a sphere in a subspace moves to another subspace, respec-
tively. Their occuring times are kept in a global queue. Thus
our approach most closely resembles sweep-line and -plane
methods in computational geometry, except that in our ap
preach the dimension being swept over is time. To efficiently
detect such events in the order of their occuring times, we
first need nice data structure for non-empty subspacee inter-
secting one or more spheres and candidate pairs of spheres
for collision. This idea is further explored in [2] from the
theoretical point of view to maintain various attributes of
mobile data.

Let U be a sufficiently big cube of volume D3 that con-
tains n moving spheres, where D is the length of edges of the
cube. The cube U represents the space in which the moving
spheres are simulated. We decompose this space into a set of
uniform subspaces of cell structure. Each of the subapacee
is a cube of volume L3. For simplicity, D is taken to be a
multiple of L, that is, D = mL. The size L3 of the volume
of a subspace is determined to be a constant multiple c of

373

that of a sphere so that each subspace is able to accommodate
two or more spheres at a given instance.

Without loss of generality, U is assumed to be contained
in the octant in which the three coordinate values of every
point are all non-negative. Moreover, a vertex of U is coin-
cident with the origin, and each edge of U is parallel with a
principle axis. Let each subspace be denoted by U(UZ,UV,u.)
for O ~ u., u,, u, < m such that

4~z, %! w) = [u=L, (u=+ I)L]

x [U,L, (u, + l)L]

x [tlzL, (Uz + I) L]. (1)

There are m3 subspaces. However, many of them do not
intersect any sphere. Since the size of a subspace is at least
twice as large as that of a sphere, each sphere intersects
at most eight subspaces. Therefore, there are O(n) non-
empty subspaces. Employing a bounded-balanced tree[19],
we build a search tree, called a subspace tree, to keep those
subspaces. A leaf node of the tree represents a non-empty
subspace and has a list of spheres intersecting the subspace
represented by the node. Search, insert, and delete oper-
ations on the subspace tree can be done in O(log n) time
each. As auxiliary data structures, every sphere maintains
a list of subspaces intersecting itself. This information is
linked to the corresponding leaf nodes of the subspace tree.

In order to efficiently accees a subspace in the tree, we
assign the unique key to every subspace U(UZ,Uy,u.) as fol-
lows:

key(u(ti=, Uy,uz)) = u=mz + Uyrn+ u., (2)

where O ~ u=, UY,u. < m. The function key(.) associates
u(uZ, u,, u.) with a unique integer in the range from O to
m3 — 1. It is clear that key(.) is one to one and onto.

Given a sphere with its position and radius, it takes a
constant time to find the intersecting subspaces with it.
It also takes a constant time to compute the key of each
subspace. There are at most eight subspaces intersecting a
sphere. Thus, we can compute all keys for a sphere in a
constant time. It takes O(log n) time to insert and update
each subspace. Since there are a maximum of eight sub-
spaces to handle for a sphere, each sphere needs O(log n)
time. Hence, it takes O(n log n) time to initially construct a
subspace tree. Moreover, the number of leaf nodes is O(n)
whkh immediately gives O(n) space to keep the tree[19].

We identify three types of events to detect the sequence
of collisions during a simulation: collision, entering, and
leaving. The first type of events is due to actual collisions,
and the other two types occur when spherea enter new sub-
spaces and leave the current subspace(s), respectively. Al-
lowing penetration with other spheres, we can compute the
times for candidate collision events of each sphere with the
others in the same subspace as well as those candidates for
Ieaving and entering subspaces. Under this condkion, the
candidate events seem to have nothing to do with actual
ones. However, given all such events for n spheres, no pene-
tration occurs until the earliest among them. Therefore, an
actual event must occur at the time of the earliest candidate,
and no others do by this time. Assuming that the subspace
tree is correctly updated to reflect the actual event, we can
again catch the next earliest event in the same manner. Re-
peating this process, all the events can be generated in their
time sequence.

Every sphere has a constant number of candidate events:
O(c), O(l), and 0(1) candidates for collision, entering, and
leaving, respectively. Thus, the total number of candidates

are O(n). We again adopt a bounded-balanced tree to main-
tain all candidate events. A leaf node of the event tree rep-
resents a candidate event. Its occuring time is used for the
search key. Occuring times may not to be unique. However,
we can always use sphere labels and event types in addition
to those times to break any ties. The candidate events are
arranged in the ascending order of their keys. By a similar
analysis for the subspace tree, we can initially construct the
event tree in O(n log n) time with O(n) space.

According to the type of the current event, the change
of distribution of the spheres over the subspaces together
with its resulting change of candidate events are correctly
updated in the data structures such as subspace and event
trees. This change includes:

1. the candidate events of each sphere that is involved in
the current event.

2. the subspaces of each sphere of the current event.

Suppose that the current event is caused by an actual
collision between two spheres. Then, the portion of the
moving path of each of those spheres after the collision is
changing due to the collision response of one sphere to the
other. Collision response is beyond the scope of this pa-
per although it itself is very interesting. There are several
models for collision response available in computer graphics
Iiterature[l, 5, 10]. By renewing the paths of two collid-
ing spheres, we can compute the new occurring times of the
candidate events of each sphere. They include the times for
candidate collisions with the other spheres in the same sub-
space(s) as well as for the candidate entering and leaving
events of the sphere. There are a pair of spheres that are
involved in a collision. Moreover, every sphere intersects at
most eight subspaces, each of which may have a constant
number c of intersecting spheres. Therefore, every collision
causes a constant number of candidate events to be renewed.
Since each of those events needs O(log n) time to be updated
in the event tree, it takes O(log n) time to handle a collision
event.

Now, consider the case that the current event occurs due
to a sphere entering a subspace. The subspace has the enter-
ing sphere as a new member in its list of intersecting spheres.
That sphere needs adding to the list for the subspace in the
subspace tree, which takes O(log n) time. Accordingly, the
new candidate events for collisions between the sphere and
the others in the subspace are added to the event tree. This
can also be done in O(log n) time since the subspace in-
tersects a constant number of spheres. We finally renew
the candidate event time for entering another subspace in
O(log n) time. Therefore, it takes O(log n) time to handle
an entering event.

Finally, suppose that the current event is caused by a
sphere leaving a subspace. Then, that sphere needs remov-
ing from the subspace, and the candidate events for colli-
sions between the sphere and the others in the subspace are
also required to be removed. Clearly, it takes O(log n) time
to update the subspace and event trees to reflect those re-
movals, respectively. It afso takes O(log n) time to renew the
candidate event time of the sphere for leaving. Therefore,
we need O (log n) time to handle a leaving event.

A brute-force approach needa 0(n~n2) operations for col-
lision detection, where nt denotes the number of time steps
during a simulation. Let n= and n, be the number of actual
collisions and that of actual entering and leaving events for
the simulation, respectively. Since it takes O(log n) time to
handle an event regardless of its type, we need O (n. log n +

374

n, log n) operations for the whole simulation of n moving
spheres after O(rz log n) initial investment for constructing
subspace and event trees. It is clear that n= cannot be fur-
ther reduced. However, n. is a function of the size of sub-
spaces, and thus needs more attention to improve.

3 Determining the Size of Subspaces

For a given n, D, a radius of spheres, and their mean veloc-
ity, we can choose L by solving the following equation:

[

~vTL-2 ,nu.j:r)’
1

{C17AOL* +C3(L – r)} – C4 = o

This equation is derived using the collision model of kinetic
theory for molecular gaa[3]. The obtained subspace size is
not optimal. However, experiments support that it is a good
approximation of the optimal subspace size.

4 Experimental Results

In order to show the efficiency of the proposed event-driven
approach, experiments are performed on an IRIS Indigo2
machine(128MHz, R1O,OOOCPU,128MB) for multiple spheres
of uniform radii freely moving in a given box. Assuming that
a gravity force is zero, the motion of each sphere is given by
its initial position and velocity. A path of a sphere is changed
whenever it undergoes a collision with other spheres or col-
lides with a face of the box.

Varying the number of spheres for a fixed radius and
mean speed while optimizing the subspace size, we measure
act ual running times (Figure 1). The vertical axis gives an
actual running time for a unit time of simulation of given
data. As plotted in the figure, it is nearly linear in n over a
large range.

Time

20 I I I
18 -
16 -
14 -
12 -
10 -

8 -
6 -
4 -

:

4000 8000 12000 16000
n

Figure 1: The radius of spherea is 1.5, their mean speed is
10W, and the size of the space is 200x200x200,

5 Conclusions

This paper proposes an event-driven approach for efficient
collision detection among multiple moving spheres of uni-
form size. The proposed approach enables us to simulate
in real time several thousands of spheres freely moving in
a 3D box. Although we assume that all spheres are of uni-
form size, our approach can afao be applicable to spheres of
non-uniform radii if the size of the largest sphere is a small
constant multiple of that of the smallest one.

Acknowledgements

We would like to thank Mr. Chan-Su Shin for his cmeful
reading.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

David Baraff. Curved surfaces and coherence for non-
penetrating rigid body simulation. Computer Graphics,
24(4):19-28, August 1990.
Julien Baach, Leonidas J. Guibas, and John Hersh-
berger. Data structures for mobile data. In ACM-SIAM
Symposium on Discrete Algorithms, 1997(to appear).
Feynmann, Leighton, and Sands. The Feynmann Lec-
tures on Physics, volume 1, pages 43. 1–43.4. Addison-
Wesley, 1963.
Stefan Gottschalk, Ming Lin, and Dinesh Manocha.
Obbtree: A hierarchical structure for rapid interfer-
encedetection. Computer Gmphics Proceedings, Annual
Confernece Series, pages 171-180, 1996.
James K. Hahn. Realistic animation of rigid bodies.
Computer Gmphicsj 22(4):299-308, August 1988.
Dan Halperin and Mark H. Overmars. Spheres,
molecules, and hidden surface removal. In Proc. 10th
Annual ACM Symposium on Computational Geometry,
pages 113-122, 1994.
Philip M. Hubbard. Approximating polyhedra with
spheres for time-critical collision detection. IEEE
Transactions of Graphics, 15(3):179-210, July 1979.
Cyrus Levinthal. Molecular model-building by com-
puter. Scientific American, pages 42-52, June 1966.
213(6).
Victor J. Milenkovic. Position-baaed physics: Simu-
lating the motion of many highly interacting spheres
and polyhedra. Computer Graphics Proceedings, An-
nual Conference Series, pages 129–136, 1996.
Matthew Moore and Jane Wilhelms. Collision detec-
tion and response for computer animation. Computer
Graphics, 22(4):289-298, August 1988.
Joseph O’Rourke and Norman Badler. Decomposition
of threedmensional objects into spheres. IEEE ‘hns-

actions on Pattern Analysis and Machine Intelligence,
PAMI-1(3):295-305, July 1979.
W. T. Reeves. Particle systems - a technique for mod-
eling a class of fuzzy objects. ACM ~ansaction on
Graphics, 2(2):91-108, April 1983.
Craig W. Reynolds. Flocks, herbs, and schools: A
distributed behavioral model. Computer Graphics,
21(4):25-34, 1987.
Karl Sims. Particle animation and rendering using data
parallel computation. Computer Graphics, 24(4):405-
413, 1990.
Richard Szeliski and David Tonnesen. Sufrace model-
ing with oriented particle systems. Computer Graphics,
26(2):185-194, July 1992.
G. Turk. Interactive collision detection for molucular
graphics. Technical report, 90-014, Dept. of Computer
Science, Univ. of North Calolina at Chapel Hill, Jan.
1990.
Vincent Hayward, St6phane Aubry, Andr6 Foisy, and
Yasmine Ghallab. Efficient collision prediction among
many moving objects. The International Journal of
Robotics Research, 14(2):129-143, 1995.
Robert Webb and Mike Gigante. Using dynamic bound-
ing volume hierarchies to improve efficiency of rigid
body simulation. Visual Computing, pages 825-842,
1992. (CGI Proc).
Dan E. WWmd and George S. Lueker. Addhg range re-
striction capability to dynamic data structure. Journal
of The Association for Computing Machinery, 32(3): pp.
597-617, July 1985.

375

