Topic 24: Approximation Algorithms (CLRS 35.0-35.3)

CPS 230, Fall 2001

- Finding solution to NP-complete problem is difficult.
- Two possible approaches.
 - If input is small enough, use exponential algorithm.
 - Otherwise, craft poly-time approximation algorithm.

We'll look at approximation algorithms for

- 1. Vertex Cover
- 2. Traveling Salesman Problem
- 3. Set Partition Problem

Definitions

- \bullet Optimization problem on input of size n.
- $C^* = \cos t$ of optimal solution.
- $C = \cos t$ of approximation algorithm's solution.
- Ratio Bound: $\rho(n)$ such that for input size n

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n) \ .$$

• Relative Error Bound: $\epsilon(n)$ such that

$$\frac{|C - C^*|}{C^*} \le \epsilon(n) \ .$$

for any n.

Vertex Cover Problem

- Undirected graph G = (V, E).
- **Vertex cover** of G is $V' \subseteq V$ such that for every $(u,v) \in E$, either $u \in V'$ or $v \in V'$ (or both).
- Vertex-cover problem: find vertex cover of minimum size (optimal vertex cover).
- NP-complete (reduction from CLIQUE; see CLRS).

Example

• Find optimal vertex cover:

A possible solution

- Only solution for this graph.
- How might we approximate a solution to vertex cover problem?

Idea

- Choose vertices of max degree.
- Works for previous example.

Problem

• What about the following graph?

• max-degree strategy gives:

Problem

• Actual optimal solution is:

• Is there a better approximation alg.?

Approximation Algorithm

```
APPROX-VERTEX-COVER(G)
1C \leftarrow \emptyset \Rightarrow C to be cover
2E' \leftarrow E[G]
3 while E' \neq \emptyset
4 do let (u, v) be an arbitrary edge of E'
5 C \leftarrow C \cup \{u, v\}
6 remove from E' every edge incident on either u or v
8 return C
```

Vertex Cover Approximation Example

Vertex Cover Approximation Example Cont.

CPS 230

Topic 24: Approximation Algorithms

Analysis of Vertex Cover Approximation

• Correctness

- Only remove "covered" edges from E'.
- Approx-Vertex-Cover returns a vertex cover.
- Running Time is O(|V| + |E|).

Further Analysis

• Theorem Approx-Vertex-Cover has ratio bound 2.

• Proof

- $-A = \{\text{edges picked in line 4}\}\ (A \text{ is a set}).$
- No two edges in A share an endpoint.
- -|C|=2|A|.
- Optimal cover, C^* must include at least one endpoint for each edge in A.
- $-|A| \le |C^*|.$
- Conclude that $|C| \leq 2 |C^*|$; that is, size of approximate cover is at worst twice size of optimal cover!

Traveling-Salesman Problem

- Given: **complete** undirected graph G = (V, E).
- Each edge $(u, v) \in E$ has integer cost c(u, v).
- Each path has an associated cost.

Traveling-Salesman Problem (TSP):

Optimization: find min-cost hamilt. cycle of G; i.e., a min-cost cycle visiting each vertex exactly once.

Decision: NP-complete (reduction from HAM-CYCLE, see CLRS).

Examples

TSP Approximation Algorithm

Suppose weights satisfy triangle inequality:

$$c(u, w) \le c(u, v) + c(v, w)$$

for all $u, v, w \in V$

$$a + b \le c$$

TSP is still NP-complete! However...

TSP Approximation Algorithm

APPROX-TSP-TOUR(G, c)1 select a vertex $r \in V[G]$ to be a "root" vertex
2 grow minimum spanning tree T for G from
root r using MST-PRIM(G, c, r)3 let L be the list of vertices visited in
preorder tree walk of T4 **return** hamiltonian cycle H that visits
vertices in the order L

Example

• Find shortest tour for:

• Find MST (with root a).

Example

• Pre-order walk of MST (node first, then children)

• Yielding tour:

• Total distance ≈ 24.00 units.

Optimal Solution

• Total distance ≈ 20.44 units.

• Theorem: APPROX-TSP-Tour with triangle inequality has ratio bound 2.

• Proof:

- $-H^* = \text{optimal tour for } G.$
- -T is a MST for $G \to c(T) \le c(H^*)$.
- $-W = \text{full walk of } T. \ c(W) = 2c(T).$
- $-c(W) \le 2c(H^*).$
- -H is preorder walk of T. By triangle inequality, $c(H) \leq c(W)$ [why?]
- $-c(H) \le 2c(H^*)$

Best ratio was $\frac{3}{2}$ for long time; now ϵ .

ϵ -Approximation Schemes

- Input of size n and relative error bound $\epsilon > 0$.
- Returns solution with $\frac{|C-C^*|}{C^*} < \epsilon$.
- Polynomial-time Approximation Scheme
 - $-O(n^{O(1)})$ time for any constant ϵ .
- Fully Polynomial Time Approximation Scheme
 - Polynomial in both n and $1/\epsilon$ (see CLRS)

Partition Problem

• Given:

$$-S = \{a_1, a_2, \dots, a_n\}$$

 $-a_1 \ge a_2 \ge \dots \ge a_n$

- **Problem:** Partition S into $A \cup B$ such that $\max(w(A), w(B))$ is minimized.
- NP-Complete (reduction from 3D matching).
- Can we find a polynomial-time approximation scheme?

Example

Approximation Scheme

- Let $m = \lfloor 1/\epsilon \rfloor$
- Find optimal partition of $S' = \{a_1, a_2, \dots, a_m\}$ by exhaustive enumeration.
- Consider $a_{m+1}, a_{m+2}, \ldots, a_n$ in turn and add to currently lighter set.

Example

- $\epsilon = 1/3$
- m = 3
- Partition $\{7, 7, 5\}$

Example Cont.

• Insert 4.

• Insert 3.

• Insert 2.

• Insert 1.

- w(A) = 15, w(B) = 14.
- What is the running time for this algorithm?

Running Time

- Finding optimal partition of S' takes $O(2^m)$ time.
- Considering each of the remaining elements of S takes O(n) time.
- Total running time is

$$O(2^m + n) = O(2^{1/\epsilon} + n)$$

= $O(n)$ for constant ϵ

Theorem: Partition produced by approximation scheme has relative error $< \epsilon$.

Proof:

- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \ge w(B')$.

• Case 1

$$-w(A') \ge \frac{1}{2}w(S)$$

- Then
$$A = A'$$
, $B = B' \cup \{m + 1, m + 2, \dots, n\}$.

- Claim: $A \cup B$ is optimal (Relative error = 0)
 - * Consider optimal solution $A^* \cup B^* = S$.

$$* w(A^*) \ge w(A^* \cap \{a_1, a_2, \dots, a_m\}) \text{ [why?]}$$

$$* w(B^*) \ge w(B^* \cap \{a_1, a_2, \dots, a_m\})$$

* Therefore,

$$\max(w(A^*), w(B^*)) \ge \max(w(A'), w(B'))$$
$$= w(A')$$
$$= w(A).$$

* Hence, $A \cup B$ is optimal.

• Case 2

$$-w(A') \le \frac{1}{2}w(S)$$

$$-|w(A) - w(B)| \le w_{m+1}$$

$$-w(A) + w(B) = w(S)$$

$$-2 \max(w(A), w(B)) \le w(S) + w_{m+1}$$

Relative Error
$$= \frac{C - C^*}{C^*}$$

$$= \frac{\frac{w(S) + w(m+1)}{2} - \frac{w(S)}{2}}{\frac{w(S)}{2}}$$

$$= \frac{w_{m+1}}{w(S)}$$

$$\leq \frac{w_{m+1}}{(m+1)w_{m+1}}$$

$$= \frac{1}{m+1}$$

$$\leq \epsilon$$

Bottom line: approx. alg. for partition which is poly-time and has relative error $< \epsilon!$