Topic 18: Basic Graph Algorithms

(CLRS Appendix B.4-B.5, 22)

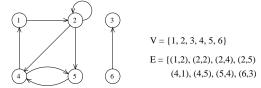
Fall 2001

1 Graph Problems

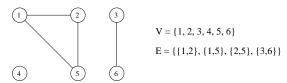
- During the next couple of weeks we will discuss graph algorithms.
- We start with a review of the basic definitions and a few fundamental graph algorithms.

1.1 Definitions

- A graph G = (V, E) consists of a finite set of vertices V and a finite set of edges E.
 - Directed graph (DAG): E is a set of ordered pairs of vertices (u, v) where $u, v \in V$



- Undirected graph: E is a set of unordered pairs of vertices $\{u,v\}$ where $u,v\in V$



- Edge (u, v) is incident to u and v
- \bullet Degree of vertex in undirected graph is the number of edges incident to it.
- In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.
- A path from u_1 to u_2 is a sequence of vertices $\langle u_1 = v_0, v_1, v_2, \cdots, v_k = u_2 \rangle$ such that $(v_i, v_{i+1}) \in E$ (or $\{v_i, v_{i+1}\} \in E$)

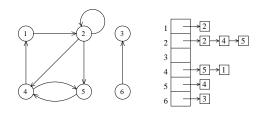
1

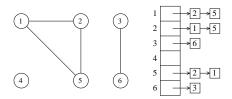
- We say that u_2 is reachable from u_1
- The *length* of the path is k
- It is a cycle if $v_0 = v_k$
- An undirected graph is *connected* if every pair of vertices are connected by a path
 - The connected components are the equivalence classes of the vertices under the "reachability" relation. (All connected pair of vertices are in the same connected component).
- A directed graph is strongly connected if every pair of vertices are reachable from each other
 - The strongly connected components are the equivalence classes of the vertices under the "mutual reachability" relation.
 - In the DAG pictured earlier, there are three strongly connected components. The subgraph induced by vertices {1, 2, 4, 5} is strongly connected and it forms a strongly connected component. The other two strongly connected components consist of the single sets {3} and {6}.
- Graphs appear all over the place in all kinds of applications, e.g.:
 - Trees (|E| = |V| 1)
 - Connectivity/dependencies (house building plans, WWW-page connections, ...)
- Often the edges (u, v) in a graph have weights w(u, v), e.g.
 - Road networks (distances)
 - Cable networks (capacity)

1.2 Representation

- Adjacency-list representation:
 - Array of |V| list of edges incident to each vertex.

Examples:

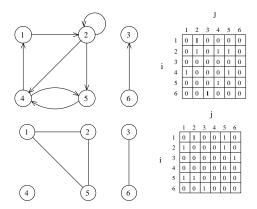




- Note: For undirected graphs, every edge is stored twice. Hence, space is O(|V|+2|E|) = O(|V|+|E|).
- If graph is weighted, a weight is stored with each edge.
- Adjacency-matrix representation:
 - $|V| \times |V|$ matrix A where

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Examples:



- Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal (i.e., $A^T = A$).
- If graph is weighted, weights are stored in the adjacency matrix instead of 1s.
- Comparison of matrix and list representation:

Adjacency list	Adjacency matrix
O(V + E) space Good if graph $sparse$ $(E << V ^2)$ No quick access to (u, v)	$O(V ^2)$ space Good if graph $dense$ ($ E \approx V ^2$) O(1) access to (u, v)

• We will use adjacency list representation unless stated otherwise (O(|V| + |E|)) space).

2 Graph traversal

- There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way
 - Breadth-first
 - Depth-first
- We can use them in many fundamental algorithms, e.g., finding cycles, connected components, ...

2.1 Breadth-first search (BFS)

- Main idea:
 - Start by visiting some source vertex s.
 - Then visit all vertices at distance 1,
 - Then visit all vertices at distance 2,
 - Then visit all vertices at distance 3,:
- BFS corresponds to computing *shortest path* distance (in terms of the number of edges) from s to all other vertices
- To control progress of our BFS algorithm, we think about coloring each vertex
 - White before we start,
 - Gray after we visit the vertex but before we have visited all its adjacent vertices,
 - Black after we have visited the vertex and all its adjacent vertices (all adjacent vertices are gray).
- ullet We use a FIFO queue Q to hold all gray vertices—vertices we have seen but are still not done with.
- We remember from which vertex a given vertex v is colored gray (visit[v]).

• Algorithm:

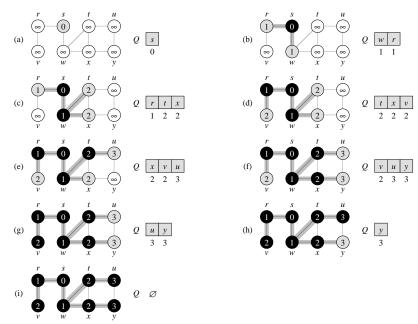
```
\begin{aligned} \operatorname{BFS}(s) \\ \operatorname{color}[s] &= \operatorname{gray} \\ d[s] &= 0 \\ \operatorname{ENQUEUE}(Q, s) \\ \operatorname{WHILE} Q \text{ not empty DO} \\ \operatorname{DEQUEUE}(Q, u) \\ \operatorname{FOR} (u, v) &\in E \text{ DO} \\ \operatorname{IF color}[v] &= \operatorname{white THEN} \\ \operatorname{color}[v] &= \operatorname{gray} \\ d[v] &= d[u] + 1 \\ \operatorname{visit}[v] &= \operatorname{u} \\ \operatorname{ENQUEUE}(Q, v) \\ \operatorname{FI} \\ \operatorname{color}[u] &= \operatorname{black} \\ \operatorname{OD} \end{aligned}
```

- Algorithm runs in O(|V| + |E|) time
- Note:
 - The edges (visit[v], v), for all $v \in V$ form a tree called the BFS-tree.
 - -d[v] contains length of shortest path (in terms of the number of edges) from s to v.
 - We can use the visit array to find the shortest path from s to any given vertex v, by tracing the path backwards from v: v, visit[v], visit[v],
- If graph is not connected we have to try to start the traversal at all nodes.

```
FOR each vertex u \in V DO 
 IF \operatorname{color}[u] = \text{white THEN BFS}(u) OD
```

- Note: We can use algorithm to compute connected components in O(|V| + |E|) time.

• BFS Example:



2.2 Depth-first search (DFS)

- ullet If we use a stack instead of a FIFO queue Q, we get another traversal order: depth-first search
 - We explore "as deeply as possible".
 - Backtrack until we find unexplored adjacent vertex,
 - Explore as deeply as possible, .
- \bullet Often we are interested in "discovery time" and "finish time" of vertex u
 - Discovery time (d[u]): indicates at what "time" vertex u is first visited.
 - Finish time (f[u]): indicates at what "time" all adjacent vertices of vertex u have been visited.
- Instead of using a stack in a DFS algorithms, we can write a recursive procedure

- We will color a vertex gray when we first meet it and black when we finish processing all adjacent vertices.
- Algorithm:

```
\begin{aligned} \operatorname{DFS}(u) & \operatorname{color}[u] = \operatorname{gray} \\ d[u] = \operatorname{time} \\ \operatorname{time} = \operatorname{time} + 1 \\ \operatorname{FOR}(u,v) \in E \operatorname{DO} \\ & \operatorname{IF} \operatorname{color}[v] = \operatorname{white} \operatorname{THEN} \\ & \operatorname{visit}[v] = u \\ & \operatorname{DFS}(v) \\ & \operatorname{FI} \\ \operatorname{OD} \\ & \operatorname{color}[u] = \operatorname{black} \\ f[u] = \operatorname{time} \\ & \operatorname{time} = \operatorname{time} + 1 \end{aligned}
```

- Algorithm runs in O(|V| + |E|) time
- As before we can extend algorithm to unconnected graphs and we can use it to find connected components in O(|V| + |E|) time.

```
FOR each vertex u \in V DO 
IF \operatorname{color}[u] = \text{white THEN DFS}(u) OD
```

• As previously, the edges (visit[v], v), for all $v \in V$ form a tree called the *DFS-tree*.

DFS: How it works

- Initialize all vertices to white
- Reset global counter
- Check each vertex; visit each white vertex using DFS
- Each call to DFS(u) roots a new tree of depth-first forest at vertex u
- Vertex is *gray* if it has been discovered, but not all its edges have been explored!
- gray edges always form a linear chain!
- \bullet Vertex is black after all its edges are explored
- \bullet When DFS returns, every vertex u is assigned:
 - 1. a discovery time d[u], and
 - 2. a finishing time f[u]

DFS: Running time

Running time $O(|V|^2)$, because DFS called once per vertex Each loop over Adj runs < |V| times. But... can we show a better bound?

• Amortized bookkeeping: charge exploration of edge *to* the edge:

Charge DFS loop body to edge (runs once per edge if directed graph, twice if undirected)
Charge rest of DFS to vertex (runs once per vertex)

• Time = O(|V| + |E|), which is *linear time*

O(|V| + |E|) is considered linear time for graph because it is linear in size of adjacency-list representation!

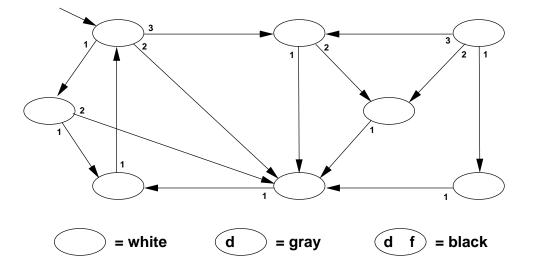
DFS Timestamping

The procedure DFS records:

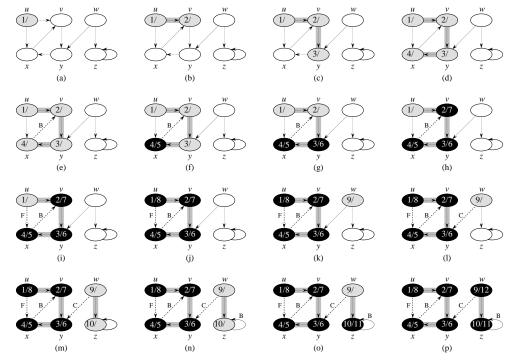
- discovery time of vertex u in d[u]
- finishing time of vertex u in f[u]

For every vertex u, d[u] < f[u].

DFS Example



DFS Example



Inside each node above,

- each gray vertex is labeled by its discovery time, and
- each black vertex is labeled by both its discovery time and its finish time.

DFS: Structure of colored vertices

Vertex u is:

- white before time d[u]
- gray between time d[u] and time f[u]
- black thereafter.

Also notice structure throughout algorithm:

- gray vertices form a linear chain.
 - stack of recursive calls
 (things started but not yet finished)

DFS: parenthesis theorem

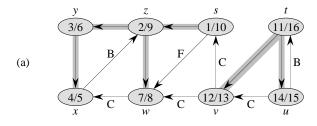
Discovery, finish times have parenthesis structure.

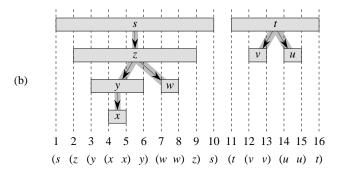
- represent discovery of u with left parenthesis "(u)"
- represent finishing u by right parenthesis "u"
- history of discoveries and finishings makes a wellformed expression! (Parentheses are properly nested.)
- \bullet If v is a descendant of u in the DFS tree, then

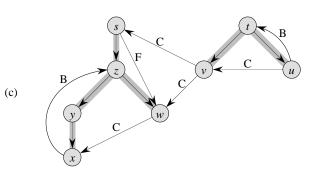
$$d[u] < d[v] < f[v] < f[u].$$

Proof in CLRS (omitted here); intuition: Intervals either disjoint or enclosed, but never (otherwise) overlap We'll just look at example.

DFS and Parenthesization







Edge Classification

Tree edge: (gray to white)
encounter new (white) vertex
Form spanning forest (no cycles)

Back edge: (gray to gray) from descendant to ancestor

Forward edge: (gray to black) nontree, from ancestor to descendant

Cross edge: (gray to black)
remainder — between trees or subtrees
(if same tree, can't go anc/desc, or desc/anc)

CPS 230 Topic 18: Basic Graph Algorithms Page 15 CPS 230 Topic 18: Basic Graph Algorithms Page 16

DFS: edge classification

Notes:

- ancestor/descendant is with respect to **tree** edges
- tree and back edges are important;
- most algorithms don't distinguish between **forward** and **cross** edges

Exercise:

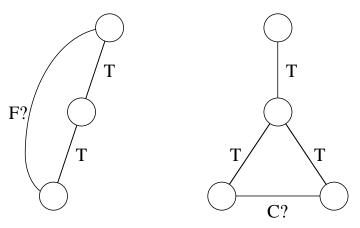
• How to distinguish forward, cross edges in DFS? (Hint: look at discovery times.)

DFS: Lemma

Theorem 22.10:

In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

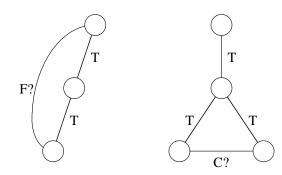
Sketch of proof:



DFS: Lemma

Theorem 22.10:

Proof:

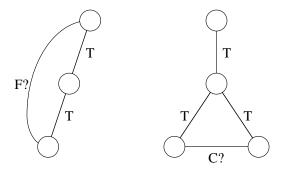


 \triangleright Suppose there's a forward edge F? (at left) But F? edge must actually be B because we must finish processing bottom vertex before resuming with top vertex.

DFS: Lemma

Theorem 22.10:

Proof:



 \triangleright Suppose there's a cross edge C? between subtrees (at right)

C? edge can't be Cross edge:

It must be explored from its first endpoint to be explored, in which case the other endpoint isn't yet explored, and the edge becomes a T edge instead of a C edge.

The search continues beyond the other endpoint, and the T edge coming out of the other endpoint changes to a B edge.

Exercise

Can use DFS to find cycles in undirected graphs!

An undirected graph is acyclic (i.e., a forest) iff a DFS yields no back edges.

- Proof that acyclic \Rightarrow no back edge: trivial (back edge \Rightarrow cycle)
- Proof that no back edges ⇒ acyclic:
 No back edges ⇒ only tree edges (by above lemma)
 ⇒ forest ⇒ acyclic

Exercise

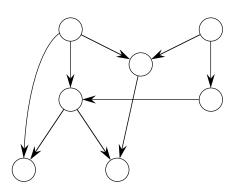
We can thus run DFS: if find a back edge, then we can stop and report that there's a cycle

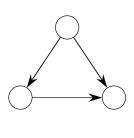
• Time O(|V|), [not O(|V| + |E|)!]

If ever see |V| distinct edges, must have seen a back edge, because in acyclic (undirected) forest, $|E| \leq |V| - 1$.

Directed Acyclic Graphs (DAGs)

• No *directed* cycles example:





- Used in many applications to indicate precedences among events
- Example: parallel code execution
 - Topological Sort (induce a total ordering)

DAG: Theorem

Theorem: A directed graph G is acyclic

iff a DFS yields no back edges.

 \Rightarrow : back edge \Rightarrow cycle

 \Leftarrow : Contrapositive: cycle \Rightarrow back edge

Suppose G has a cycle. Let v have lowest discovery # on cycle, and let u be predecessor on cycle.

$$\begin{array}{ccc} u & \longrightarrow v \\ \nwarrow & \dots \swarrow \end{array}$$

(v is first vertex visited)

When v discovered, whole cycle is white.

Must visit everything reachable on a white path from v before returning from DFS(v).

Thus (u, v) is a back edge. \Box

• O(|V| + |E|) time [Why not O(|V|) as before?]

Topological Sort

Topological Sort of a dag G = (V, E) is a

• Linear ordering of all vertices of a dag

such that

• If G contains an edge (u, v), then u appears before v in the ordering.

If the graph has a cycle, then no linear ordering is possible!

Topological Sort: pseudocode

The following algorithm topologically sorts a DAG:

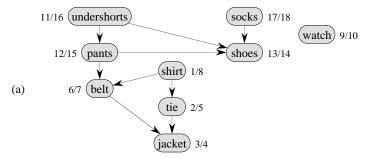
Topological-Sort(G)1 call DFS(G) to compute finishing times f[v]for each vertex v2 as each vertex is finished, insert it onto the
front of a linked list
3 return the linked list of vertices

At end, linked list comprises total ordering!

CPS 230 Topic 18: Basic Graph Algorithms Page 25 CPS 230 Topic 18: Basic Graph Algorithms Page 26

Topological Sort: Example

Example: precedence relations (don x before y)
Intuition: Can "schedule" task only when all of
its follow-on tasks have been scheduled. The task is
scheduled earlier than its follow-on tasks.





Topological Sort: running time

Running Time:

- \bullet depth-first search: takes O(|V|+|E|) time
- insert each of the |V| vertices onto the front of the linked list: takes O(1)

We can perform a topological sort in time O(|V| + |E|).

CPS 230 Topic 18: Basic Graph Algorithms Page 27 CPS 230 Topic 18: Basic Graph Algorithms Page 28

Topological Sort: correctness

Correctness proof for TOPOLOGICAL-SORT(G)

Claim:
$$(u, v) \in E \Rightarrow f[u] > f[v]$$

When
$$(u, v)$$
 explored, u is $gray$
If $v = gray$
 $\Rightarrow (u, v) = \text{backedge (cycle, contradiction)}.$

If
$$v = white$$

 $\Rightarrow v$ becomes descendant of u
 $\Rightarrow f[v] < f[u]$

If
$$v = black$$

 $\Rightarrow f[v] < f[u]$

Alternative algorithm for Topological Sort

Count the in-degree of each vertex. Then repeat the following until there are no more vertices: Remove a vertex with in-degree 0, remove all its outgoing edges, and update the in-degrees of the neighboring vertices.

```
FOR all vertices v DO
     degree[v] = 0
OD
FOR all edges (u, v) \in E DO
     degree[v] = degree[v] + 1
     IF degree[v] = 0 THEN Enqueue(Q, v)
OD
WHILE Q \neq \emptyset DO
     Dequeue(Q, u)
     Topsort(u) = i
     i = i + 1
     FOR all edges (u, v) \in E DO
          degree[v] = degree[v] - 1
          IF degree[v] = 0 THEN Engueue(Q, v)
     OD
OD
```

Strongly Connected Components (SCC)

A strongly connected component of a directed graph G = (V, E) is:

a maximal set of vertices $U \subseteq V$ such that for every pair of vertices u and v in U, we have both

•
$$u \to \cdots \to v$$
 and

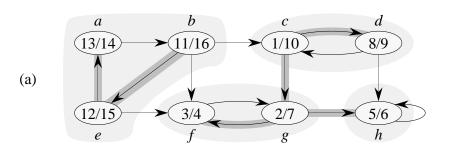
$$\bullet v \to \cdots \to u$$

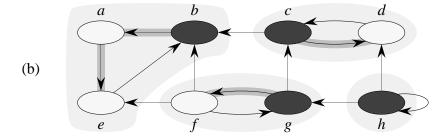
That is, u and v are reachable from each other!

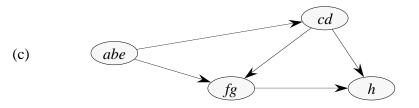
in other words ...

- $u \mathbf{R} v$ if u and v lie on a common cycle.
- \mathbf{R} is an equivalence relation (r,s,t).
- strongly connected components are a partition of graph G under \mathbf{R} .

SCC: examples







Topic 18: Basic Graph Algorithms

Page 31

CPS 230

Topic 18: Basic Graph Algorithms

SCC: Pseudocode

 $(CLRS \S 22.5)$

To compute SCC of directed graph G = (V, E), use two DFS's, one on G and one on G^{T} (G, with edges swapped):

STRONGLY-CONNECTED-COMPONENTS(G)

- 1 call DFS(G) to compute finishing times f[u] for each vertex u
- 2 compute G^{T}
- 3 call $DFS(G^T)$, but in the main loop of DFS, consider the vertices in order of decreasing f[u] (as computed in line 1)
- 4 output vertices of each tree in the depth-first forest of step 3 as a separate SCC

Intuition: explore latest-finished vertices first Running time $\Theta(V+E)$ [Why?]

• Strongly-Connected-Components can be found in linear time.

SCC: Lemmas and Theorems

Lemma 22.13

• Let C and C' be two strongly connected components in directed graph G. Let $u, v \in C$ and $u', v' \in C'$. If there is a path in G from u to u', then there cannot be a path in G from v' to v.

Lemma 22.14

• Let C and C' be two strongly connected components in directed graph G. Suppose there is an edge (u, v) in G, where $u \in C$ and $v \in C'$. Then f(C) > f(C').

Corollary 22.15

• Let C and C' be two strongly connected components in directed graph G. Suppose there is an edge (u, v) in G^{T} , where $u \in C$ and $v \in C'$. Then f(C) < f(C').

SCC: Lemmas and Theorems

Theorem 22.16

• STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the strongly connected components of a directed graph G.

See CLRS §22.5 for proofs and further explanations.