— We say that wuy is reachable from wu,

— The length of the path is k

Topic 18: Basic Graph Algorithms ~ Ttisa cycle if v = v,

(CLRS Appendix B.4-B.5, 22) e An undirected graph is connected if every pair of vertices are connected by a path

— The connected components are the equivalence classes of the vertices under the “reachability”
relation. (All connected pair of vertices are in the same connected component).

Fall 2001 e A directed graph is strongly connected if every pair of vertices are reachable from each other

— The strongly connected components are the equivalence classes of the vertices under the “mutual

reachability” relation.
1 Graph Problems , . .
— In the DAG pictured earlier, there are three strongly connected components. The subgraph in-
e During the next couple of weeks we will discuss graph algorithms. duced by vertices {1,2,4,5} is strongly connected and it forms a strongly connected component.

The other two strongly connected components consist of the single sets {3} and {6}.
o We start with a review of the basic definitions and a few fundamental graph algorithms.

1.1 Definitions e Graphs appear all over the place in all kinds of applications, e.g:
e A graph G = (V, E) consists of a finite set of vertices V and a finite set of edges E. — Trees (|E|=|V]—1)
— Directed graph (DAG): E is a set of ordered pairs of vertices (u,v) where u,v € V — Connectivity /dependencies (house building plans, WWW-page connections, .. .)

e Often the edges (u,v) in a graph have weights w(u,v), e.g.

— Road networks (distances)
V={1,23 4,56}
— Cable networks (capacity)
E={(12),(22), (24), (25
odlFORNO (41),(45), (54), (6.3)

1.2 Representation
— Undirected graph: E is a set of unordered pairs of vertices {u, v} where u,v € V o Adjacency-list representation:
e — Array of |V list of edges incident to each vertex.

V={123456
{ } Examples:

E={{1,2},{15},{2,5},{3.6}} ‘
® ® O—— &

e Edge (u,v) is incident to u and v '
e Degree of vertex in undirected graph is the number of edges incident to it.

e In (out) degree of a vertex in directed graph is the number of edges entering (leaving) it.

o A path from u; to us is a sequence of vertices (uy = vy, vy, v, ++ , Up = ug) such that (v;,v;41) € E
(or {v;,viy1} € E)

1 CPS 230 Topic 18: Basic Graph Algorithms Page 2

Adjacency list ‘ Adjacency matrix

O(|V| + |E]) space O(JV]?) space
Good if graph sparse (|E| << |[V|?) | Good if graph dense (|[E| =~ [V|?)
No quick access to (u, v) O(1) access to (u,v)
@ e e We will use adjacency list representation unless stated otherwise (O(|V| + |E|) space).
— Note: For undirected graphs, every edge is stored twice. Hence, space is O(|V]| + 2|E|) = 2 Graph traversal
O(V1]+ |E]. e There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic
— If graph is weighted, a weight is stored with each edge. way

— Breadth-first
— Depth-first

o Adjacency-matriz representation:

— |V] x |[V] matrix A where
e We can use them in many fundamental algorithms, e.g., finding cycles, connected components, . ..

{1 if(i,j)eE
% =) 0 otherwise

2.1 Breadth-first search (BFS)

Examples: L
‘ J e Main idea:
123456 s
e a ° — Start by visiting some source vertex s.
1]o]1]oJo]o o !
2{of1fo1]a]o — Then visit all vertices at distance 1,
. 3lofofofo]o]o . . .
I —
al1ToTo o1t o Then visit all vertices at distance 2,
5]0jojo 100 — Then visit all vertices at distance 3,
OWl-ORNOREE
j . . . g g g
o 123456 e BFS corresponds to computing shortest path distance (in terms of the number of edges) from s to all
1fof1]ofo]1]o other vertices.
2[1]ofofo]1]o
i 3[ofofofo]o]1 e To control progress of our BFS algorithm, we think about coloring each vertex
4(0[0|0|0 0|0
s1]1]oofo]o — White before we start,
6lofof1]o]o]o

— Gray after we visit the vertex but before we have visited all its adjacent vertices,

® ©

— Note: For undirected graphs, the adjacency matrix is symmetric along the main diagonal (i.c.,
AT —
AT = 4). e We use a FTFO queue @ to hold all gray vertices—vertices we have seen but are still not done with.

— Black after we have visited the vertex and all its adjacent vertices (all adjacent vertices are

— If graph is weighted, weights are stored in the adjacency matrix instead of 1s. i i
e We remember from which vertex a given vertex v is colored gray (visit[v]).

e Comparison of matrix and list representation:

CPS 230 Topic 18: Basic Graph Algorithms Page 3 CPS 230 Topic 18: Basic Graph Algorithms Page 4

CPS 230

e Algorithm:

BFS(s)
color[s] = gray
d[s] =0

ENQUEUE(Q, s)
WHILE @ not empty DO
DEQUEUE(Q, u)
FOR (u,v) € E DO
IF color[v] = white THEN
color[v] = gray
dlv] = d[u] + 1
visit[v] = u
ENQUEUE(Q, v)
FI
color|u] = black
0D

o Algorithm runs in O(|V| + |E|) time

e Note:

— The edges (visit[v], v), for all v € V form a tree called the BFS-tree.

— d[v] contains length of shortest path (in terms of the number of edges) from s to v.

— We can use the visit array to find the shortest path from s to any given vertex v, by tracing the

path backwards from v: v, visit[v], visit[visit[v]],

e If graph is not connected we have to try to start the traversal at all nodes.

FOR each vertex u € V DO
IF color[u] = white THEN BFS(u)
oD

— Note: We can use algorithm to compute connected components in O(

Topic 18: Basic Graph Algorithms

V

+ |E|) time.

Page 5

e BFS Example:

r S

r s
(9

vVooow

r s
®

vVooow

Q [s]

0

Q [rIt]x]

122

Q

2 2 3

Q [u]y] ()

2.2 Depth-first search (DFS)

o If we use a stack instead of a FIFO queue @), we get another traversal order: depth-first search

— We explore “as deeply as possible”.

— Backtrack until we find unexplored adjacent vertex,

— Explore as deeply as possible,

e Often we are interested in “discovery time” and “finish time” of vertex u

— Discovery time (d[u]): indicates at what “time” vertex w is first visited.

Q [w[r]

11

Q [t]x]v]

2 22

Q

2 3 3

©
w]

— Finish time (f[u]): indicates at what “time” all adjacent vertices of vertex u have been visited.

o Instead of using a stack in a DFS algorithms, we can write a recursive procedure

CPS 230

Topic 18: Basic Graph Algorithms

Page 6

— We will color a vertex gray when we first meet it and black when we finish processing all adjacent
vertices.

e Algorithm:

DFS(u)
color[u] = gray
d[u] = time
time = time + 1
FOR (u,v) € E DO
IF color[v] = white THEN
visit[v] = u
DFS(v)
FI
OD
color[u] = black

flu] = time

time = time + 1

o Algorithm runs in O(|V| + |E|) time
e As before we can extend algorithm to unconnected graphs and we can use it to find connected
components in O(|V| + |E|) time.
FOR each vertex u € V' DO
IF color[u] = white THEN DFS(u)
OD

o As previously, the edges (visit[v],v), for all v € V form a tree called the DFS-tree.

CPS 230 Topic 18: Basic Graph Algorithms Page 7

DFS: How it works

e Initialize all vertices to white
e Reset global counter

e Check each vertex; visit each white vertex using
DFS

e Each call to DFS(u) roots a new tree of depth-first
forest at vertex u

e Vertex is gray if it has been discovered,
but not all its edges have been explored!

e gray edges always form a linear chain!
e Vertex is black after all its edges are explored
e When DF'S returns, every vertex w« is assigned:

1. a discovery time d[u], and

2. a finishing time f|u]

CPS 230 Topic 18: Basic Graph Algorithms Page 8

DFS: Running time

Running time O(|V|?), because

DF'S called once per vertex

Each loop over Adjruns < |V/| times.
But... can we show a better bound?

e Amortized bookkeeping: charge exploration of
edge to the edge:

Charge DF'S loop body to edge (runs
once per edge if directed graph, twice if undirected)

Charge rest of DF'S to vertex (runs once per vertex)
e Time = O(|V| + | E|), which is linear time
O(|V| + |E]) is considered linear time for graph

because it is linear in size of adjacency-list
representation!

CPS 230 Topic 18: Basic Graph Algorithms Page 9

DFS Timestamping

The procedure DF'S records:

e discovery time of vertex u in d[u]

e finishing time of vertex u in f[u]

For every vertex wu,

dlu] < flu] .

CPS 230 Topic 18: Basic Graph Algorithms

Page 10

CPS 230

DFS Example

@ =y

Topic 18: Basic Graph Algorithms

Page 11

tis
PP

@

sk o
S

) w

(m)

DFS Example

uv(w> uv(vv>
PP S

(b

) (©)
0 G
O o r

) 9)

(

u \' w
DD
&b
X y z
®

C,

oo
0]

u v w
Fi B c’
v B
O]

Inside each node above,

u Vv w
@=@> O
4
@@
X y z
(d)
-

B
Y
D- @5
X y z
h

e cach gray vertex is labeled by its discovery time, and

e cach black vertex is labeled by both its discovery
time and its finish time.

CPS 230

Topic 18: Basic Graph Algorithms

Page 12

DFS: Structure of colored vertices

Vertex u 1s:
e white before time d|u)
e gray between time d[u] and time f[u]

e black thereafter.

Also notice structure throughout algorithm:

e gray vertices form a linear chain.

— stack of recursive calls
(things started but not yet finished)

CPS 230 Topic 18: Basic Graph Algorithms

DFS: parenthesis theorem

Discovery, finish times have
parenthesis structure.

e represent discovery of u with left parenthesis “(u”
e represent finishing u by right parenthesis “u)”

e history of discoveries and finishings makes a well-
formed expression! (Parentheses are properly nested.)

e If v is a descendant of w in the DFS tree, then
dlu] < d[v] < flv] < flu].

Proof in CLRS (omitted here); intuition:
Intervals either disjoint or

enclosed, but never (otherwise) overlap

We'll just look at example.

Page 13 CPS 230 Topic 18: Basic Graph Algorithms Page 14

DFS and Parenthesization Edge Classification

@ Tree edge: (gray to white)
encounter new (white) vertex

Form spanning forest (no cycles)

Back edge: (gray to gray)
from descendant to ancestor

(b) Forward edge: (gray to black)

nontree, from ancestor to descendant

12345678 91011121314 1516

G XNYWW2 s Y U Cross edge: (gray to black)

remainder — between trees or subtrees

(if same tree, can’t go anc/desc, or desc/anc)

CPS 230 Topic 18: Basic Graph Algorithms Page 15 CPS 230 Topic 18: Basic Graph Algorithms Page 16

DF'S: edge classification

Notes:
e ancestor/descendant is with respect to tree edges
e tree and back edges are important;

e most algorithms don’t distinguish between
forward and cross edges

Exercise:

e How to distinguish forward, cross edges in DFS?
(Hint: look at discovery times.)

CPS 230 Topic 18: Basic Graph Algorithms Page 17

DFS: Lemma

Theorem 22.10:

In a depth-first search of an undirected graph G, ev-
ery edge of GG is either a tree edge or a back edge.

Sketch of proof:

F?

c?

CPS 230 Topic 18: Basic Graph Algorithms Page 18

DFS: Lemma

Theorem 22.10:
Proof:

F?

c?

> Suppose there’s a forward edge F'7 (at left)
But £ edge must actually be B because we must fin-
ish processing bottom vertex before resuming with top
vertex.

CPS 230 Topic 18: Basic Graph Algorithms Page 19

DFS: Lemma

Theorem 22.10:
Proof:

F?

c?

> Suppose there’s a cross edge C'?7 between
subtrees (at right)
C" edge can’t be Cross edge:
It must be explored from its first endpoint to be ex-
plored, in which case the other endpoint isn’t yet ex-
plored, and the edge becomes a T edge instead of a C
edge.
The search continues beyond the other endpoint, and
the T edge coming out of the other endpoint changes
to a B edge.

CPS 230 Topic 18: Basic Graph Algorithms Page 20

Exercise

Can use DF'S to find cycles in undirected graphs!

An undirected graph is acyclic (i.e., a forest)
iff a DF'S yields no back edges.

e Proof that acyclic = no back edge:
trivial (back edge = cycle)

e Proof that no back edges = acyclic:

No back edges = only tree edges (by above lemma)
= forest = acyclic

CPS 230 Topic 18: Basic Graph Algorithms Page 21

Exercise

We can thus run DF'S: if find a back edge, then we
can stop and report that there’s a cycle

e Time O(|V|), [not O(|V| + |E|)]

If ever see |V| distinct edges, must have seen a

back edge, because in acyclic (undirected) forest,
[E| < [V]-1

CPS 230 Topic 18: Basic Graph Algorithms Page 22

Directed Acyclic Graphs (DAGs)

e No directed cycles

example:

e Used in many applications to indicate precedences
among events

e Example: parallel code execution

— Topological Sort (induce a total ordering)

CPS 230 Topic 18: Basic Graph Algorithms Page 23

DAG: Theorem

Theorem: A directed graph G is acyclic
iff a DFS yields no back edges.
=: back edge = cycle

<: Contrapositive: cycle = back edge

Suppose G has a cycle. Let v have lowest discovery #
on cycle, and let u be predecessor on cycle.

u —> v
N
(v is first vertex visited)
When v discovered, whole cycle is white.

Must visit everything reachable on a white path from
v before returning from DFS(v).
Thus (u, v) is a back edge. o

e O(|V] +|E|) time [Why not O(|V|) as before?]

CPS 230 Topic 18: Basic Graph Algorithms Page 24

Topological Sort of a dag G = (V, E) is a

e Linear ordering of all vertices of a dag

Topological Sort

such that

e If GG contains an edge (u,v), then

u appears before v in the ordering.

If the graph has a cycle, then
no linear ordering is possible!

CPS 230

Topic 18: Basic Graph Algorithms

Page 25

Topological Sort: pseudocode

The following algorithm topologically sorts a DAG:

TOPOLOGICAL-SORT(G)

1call DFS(G) to compute finishing times flv]

2 as each vertex is finished, insert it onto the

for each vertex v

front of a linked list

3return the linked list of vertices

At end, linked list comprises total ordering

CPS 230

Topic 18: Basic Graph Algorithms

Page 26

Topological Sort: Example

Example: precedence relations (don x before)
Intuition: Can “schedule” task only when all of
its follow-on tasks have been scheduled. The task is
scheduled earlier than its follow-on tasks.

17118

10

) -
() (socks) (undershorts) »(pants) = shoes) (waich) ~(&rt =(bat) (tie)

3/4

17/18 11/16 12/15 13/14 9/10 /8 6/7 2/5

CPS 230 Topic 18: Basic Graph Algorithms Page 27

Topological Sort: running time

Running Time:

e depth-first search: takes O(|V| + |F|) time

e insert each of the |V/| vertices onto the front of the
linked list: takes O(1)

We can perform a topological sort in time O(|V| +
|E]).

CPS 230 Topic 18: Basic Graph Algorithms Page 28

Topological Sort: correctness Alternative algorithm for Topological Sort

Count the in-degree of each vertex. Then repeat the following until there are no more vertices: Remove a

COI“I“eCt ness pl‘OOf fOI‘ T OPOLOGICAL- S ORT (G) vertex with in-degree 0, remove all its outgoing edges, and update the in-degrees of the neighboring vertices.

FOR all vertices v DO

Claim: (u,v) € E = flu] > f[v]

degree[v] = 0
0D
. FOR all edges (u,v) € F DO
When (u, v) explored, u is gray topeel] — degrcl] 5 1
If v =gray IF degree[v] = 0 THEN ENQUEUE(Q, v)
= (u,v) = backedge (cycle, contradiction). on
WHILE Q # §§ DO

DEQUEUE(Q, u)

If v =whaite Tonsort(u] — i
opsort(u) =i
= v becomes descendant of u izit1
= f[’U] < f[u] FOR all edges (u,v) € E DO

degree[v] =degree[v] — 1
IF degree[v] = 0 THEN ENQUEUE(Q, v)

If v =black oD
= flv] < flu] o

CPS 230 Topic 18: Basic Graph Algorithms Page 29 CPS 230 Topic 18: Basic Graph Algorithms Page 30

Strongly Connected Components (SCC)

A strongly connected component of

a directed graph G = (V| F) is:

a maximal set of vertices U C V such that for every

pair of vertices u and v in U, we have both

oU— U

and

°oU - —u

That is, u and v are reachable from each other!

i other words . ..

e u R v if u and v lie on a common cycle.
e R is an equivalence relation (r,s,t).

e strongly connected components are a

partition of graph G under R.

CPS 230

Topic 18: Basic Graph Algorithms

Page 31

(@

(b)

(©)

CPS 230

SCC: examples

Topic 18: Basic Graph Algorithms

Page 32

SCC: Pseudocode

(CLRS §22.5)

To compute SCC of directed graph G' = (V, F), use
two DFS’s, one on G and one on G1 (G, with
edges swapped):

STRONGLY-CONNECTED-COMPONENTS(()

1 call DFS(G) to compute finishing times flu]
for each vertex u

2 compute G

3 call DFS(GT), but in the main loop of DFS,
consider the vertices in order of
decreasing flu] (as computed in line 1)

4 output vertices of each tree in the depth-first
forest of step 3 as a separate SCC

Intuition: explore latest-finished vertices first
Running time O(V + E) [Why?]

e Strongly-Connected-Components can be
found in linear time.

CPS 230 Topic 18: Basic Graph Algorithms Page 33

SCC: Lemmas and Theorems

Lemma 22.13

e Let C and C be two strongly connected components
in directed graph G. Let u,v € C and /,v" € C’.
If there is a path in G from w to v/, then there cannot
be a path in G from v’ to v.

Lemma 22.14

e Let C and C’ be two strongly connected components
in directed graph . Suppose there is an edge (u, v)
in G, where u € C and v € C'.

Then f(C) > f(C").

Corollary 22.15

e Let C and C’ be two strongly connected components
in directed graph G. Suppose there is an edge (u, v)
in G, where u € C and v € C'.

Then f(C) < f(C).

CPS 230 Topic 18: Basic Graph Algorithms Page 34

SCC: Lemmas and Theorems

Theorem 22.16

e STRONGLY-CONNECTED-COMPONENTS(G) cor-
rectly computes the strongly connected components
of a directed graph G.

See CLRS §22.5 for proofs and further explanations.

CPS 230 Topic 18: Basic Graph Algorithms Page 35

