Topic 20: Shortest Paths in Graphs

(CLRS 24.0-24.3, 25.2)
CPS 230, Fall 2001
Digraph G = (V, E') with weight function W : £ — R

Weight of path p =v; — vy = -+ — v 18
k—1
w(p) = Y w(v, vis1)
1=1

“Shortest” path = path of minimum weight.

Applications
e Static/dynamic network routing

e Robot motion planning

e Different variants of shortest path problem:

— Single pair shortest path: Find shortest path
from u to v.

— Single source shortest path (SSSP): Find short-
est path from source s to all vertices v € V.

— All pair shortest path (APSP). Find shortest
path from v to v for all u,v € V.

e Note:

— No algorithm is known for computing a single pair
shortest path better than solving the (“bigger”)
SSSP problem.

— APSP can be solved by running SSSP |V'| times.
—> Lets focus on the SSSP problem.

CPS 230 Topic 20: Shortest Paths in Graphs Page 2

Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

OO OO0

If some subpath were not a shortest path,
we could substitute the shorter subpath and create an

even shorter total path. ¢

CPS 230 Topic 20: Shortest Paths in Graphs Page 3

Triangle Inequality

Definition: §(u,v) = weight of a shortest path from
u to v.

Theorem: 6(u,v) < d(u, z) + 6(x,v)

Proof: Shortest path « — --- — v is no longer than
any other path u — --- — v. L.n particular, it is no
longer than the path concatenating the shortest path
u — --- — x with the shortest path z — --- — wv.

O

CPS 230 Topic 20: Shortest Paths in Graphs Page 4

Is shortest-path well-defined?

Negative weight cycle = no shortest path.

Argument: Can shorten path by traversing cycle. -

CPS 230 Topic 20: Shortest Paths in Graphs Page 5

Bellman-Ford Algorithm

Most basic “single-source” shortest-paths
algorithm

e Finds shortest path weights from
specified source stoallv e V

e Maintains estimate d[v] of path length from s to v,
which 1s updated iteratively

e Actual paths easily reconstructed (CLRS §24.3)

CPS 230 Topic 20: Shortest Paths in Graphs Page 6

Bellman-Ford Algorithm

BELLMAN-FORD(G, w, s)
1 for eachv € V
2 do d[v] < o
3 d[s] + 0 > INITIALIZE-SINGLE-SOURCE(G, s)

4 fori<+ 1to|V]|—1

5 do for each edge (u,v) € F > RELAX
6 do if d[v] > d[u] + w(u, v)
7 then d[v] + d[u] + w(u, v)

8 for each edge (u,v) € £
9 do if d[v] > du] + w(u, v)
10 then no solution
Why call it “Relax”? Chain is getting tighter!
Think of violations of d[v] < d[u] + w(u,v) as
“pressure”’. The pressure is relaxed by shortening the
estimate of the distance from s to v.

CPS 230 Topic 20: Shortest Paths in Graphs Page 7

Bellman-Ford Algorithm

Three code sections:

e Lines 1 — 3:
Initialize: d[v|, which will converge to shortest-
path values 9.

e Lines 4 — 7:
Relax: For |V| — 1 times, do the following:
For each edge, do a relaxation step.

e Lines 8 — 10:
Test: Was a solution achieved (iff no negative-weight
cycles)?

CPS 230 Topic 20: Shortest Paths in Graphs Page 8

Bellman-Ford Algorithm: Running time

Running Time: OV - FE)

e constants are good
e it 1s simple

e short code

very practical.

CPS 230 Topic 20: Shortest Paths in Graphs Page 9

Bellman-Ford Algorithm Example

(2),
N\ F@
/
O

> 3
A
()=
5

CPS 230 Topic 20: Shortest Paths in Graphs Page 10

Bellman-Ford Algorithm Example

e Initialization. Put initial d values in nodes:
A + 0, rest < oo.

e 1st relaxation pass. Process edges in order
(A, B), (A,C), (B,C), (B,D), (D,B), (D,C),
(K, D), (B, E).

¢ 2nd relaxation pass. Process edges in same
order. Only D changes.

CPS 230 Topic 20: Shortest Paths in Graphs Page 11

Bellman-Ford Algorithm Example

e Can stop when no change is detected

dlA B C D FE

mit| 0 co 0o 0o oo
pass 1|0 -1 2 1 1
pass2|0 -1 2 -2 1
pass 3|0 -1 2 -2 1

e The distances in each pass and the convergence speed
of the algorithm depend on the order that the edges
are processed.

CPS 230 Topic 20: Shortest Paths in Graphs Page 12

Bellman-Ford Algorithm: Lemma

Lemma: dv| > (s, v) always.

Proof:

e Initially true
e Let v be first vertex for which d[v] < é(s,v), and
let u be vertex that caused d[v] to change:

dv| = dlu] + w(u,v)

e Then
dlv] < d(s,v)
< 0(s,u) +d(u,v) (Triangle inequality)
< 0(s,u) + w(u,v) (shortest path < specific
< dlu] + w(u,v) (v is first violation)

contradicts d|v] = d|u] + w(u, v) (above).

Therefore, once d|v]| reaches é(s,v), it can’t change
(since d[v] can only decrease, never increase).

CPS 230 Topic 20: Shortest Paths in Graphs Page 13

Bellman-Ford Algorithm: Correctness

Claim: Bellman-Ford correct (i.e.,
after |V| — 1 passes, all the d values are correct)

Proof: Let v be any vertex, and consider a shortest
path from s to v (assuming no neg-weight cycles):

S—2UV] —2 V) —> V3 —2>UVq4 —V

e Initially, d|s] = 0 is correct
(and doesn’t change thereafter since the algorithm
never increases d)

CPS 230 Topic 20: Shortest Paths in Graphs Page 14

Bellman-Ford Algorithm: Correctness

Proof: (continued)

o After 1 pass through edges, d|v1] is correct
(and doesn’t change thereafter)

(d|s| is correct, and by the optimal substructure,
the shortest distance is w(s, v1).

1st pass sets d|v]| < d|s] + w(s, v1), which is the
right answer.)

e After 2 passes through edges, d|v9] is correct (and
doesn’t change thereafter)

e Terminates in |V| — 1 passes. Why?
If no negative-weight cycles:

— every shortest path is simple (no cycles)
— longest simple path has |[V| — 1 edges

CPS 230 Topic 20: Shortest Paths in Graphs Page 15

Bellman-Ford Algorithm: Correctness

Proof: (continued)

e Thus if no neg-weight cycles, all the d|v| converge
in |V| — 1 passes.
Equivalently, if a value d|v] fails to converge after
|V'| — 1 passes, 3 neg-weight cycle.

e Last part of algorithm tests for success by seeing
if another pass would change anything.

The converse is also true:
If 4 neg-weight cycle reachable from s, then some
value d[v] fails to converge after |V| — 1 passes.

(Proof left as exercise.) (CLRS Theorem 24.4.)

So... Bellman-Ford can be used to check for negative-
weight cycles.

CPS 230 Topic 20: Shortest Paths in Graphs Page 16

SSSP in DAG

e If graph is acyclic, we can solve SSSP by relaxing
outgoing edges from vertices in the topological sort
order of the vertices.

e Running time is O(|E]).

CPS 230 Topic 20: Shortest Paths in Graphs Page 17

Dijkstra’s Algorithm

Dijkstra’s Algorithm:

e Non-negative edge weights
—> shortest paths always exist.
(If there are no negative weights, Dijkstra’s algo-
rithm is faster than Bellman-Ford.)

e [ike breadth-first-search
(If all weights = 1, use BF'S, otherwise Dijkstra.)

e Use for Q) a priority queue keyed by d|v].
Greedy, like Prim’s algorithm for MST
BE'S used FIFO queue

CPS 230 Topic 20: Shortest Paths in Graphs Page 18

Dijkstra’s Algorithm: Pseudocode

DIJKSTRA(G, w, s)
1 for eachv e V

2 do d[v] < o

3 d|s] + 0

4.8«

5 Q<+ V

6 while () # ()

7 do u < EXTRACT-MIN(Q)

8 S+ SuU{u}

9 for each v € Adjlu]
10 do if dv] > du] + w(u, v)
11 then d|v| « d|u| + w(u,v)

What is line 7 doing?
What is line 11 doing?

CPS 230 Topic 20: Shortest Paths in Graphs Page 19

Dijkstra’s Algorithm: Notes

Observe:

e relaxation step

e setting d|v| updates Q)
(DECREASE-KEY operation)

e similar to Prim’s minimum-spanning-tree algorithm

CPS 230 Topic 20: Shortest Paths in Graphs Page 20

Dijkstra’s Algorithm

CPS 230 Topic 20: Shortest Paths in Graphs Page 21

Another Example of Dijkstra’s Algorithm

® — VvertexinS

O — VertexinV\S
CPS 230 Topic 20: Shortest Paths in Graphs Page 22

Dijkstra’s Algorithm: Run-Time Analysis

e EXTRACT-MIN executed |V| times

e DECREASE-KEY executed |F/| times

Time = V|- Tpxrract-MINTIZ TDECREASE-KEY

Analysis: Look at different () implementations.

Priority queue TEytracT-MIN IDECREASE-KEY 1otal

array O(|V]) o(1) O(IV]*)
binary heap O(log|V|) O(log |V]) O(|E|log |V])
Fibonacci heap O(log |V]) O(1) O(|V]log |V|+ |E|)
amortized amortized worst case

CPS 230 Topic 20: Shortest Paths in Graphs Page 23

Dijkstra’s Algorithm: Analysis

e () = unsorted array:

scan to find minimum
just index and update to change key

e () = Fibonacci heap

Note advantage of amortized analysis:

Can use amortized Fibonacci heap bounds in analy-
sis, as if they were worst-case bounds, and get (real)
worst-case bounds on aggregate running time.

CPS 230 Topic 20: Shortest Paths in Graphs Page 24

Dijkstra’s Algorithm: Correctness

Correctness: Prove that whenever u 1s added to S,

dlul = 6(s, u)
Proof:

e Note that Vv d|v] > §(s,v)

e Let u be first vertex added to S such that there
is a path from s to u of length shorter than d|ul
= dlu] > (s, u)

e Let’s consider the set S immediately before u is
processed (i.e., u is not yet in .S, but is about to
be picked next):

CPS 230 Topic 20: Shortest Paths in Graphs Page 25

Dijkstra’s Algorithm: Correctness

(Proof continued)

e Let y be first vertex € V' — S on actual shortest

CPS 230

path from s to u
= d[y] =4(s,y)
Because:

— d|x] is set correctly for y’s predecessor & € S on
the shortest path (by choice of w as first choice
for which that’s not true)

— When we put z into .S, we relaxed (z, y), giving
d|y] its correct value

Topic 20: Shortest Paths in Graphs Page 26

Dijkstra’s Algorithm: Correctness

(Proof continued)

dlu] > (s, u)
= 0(s,y) +d(y,u) (optimal substructure)
= dly| + d(y, u)
> d|y] (no negative weights)

e But dlu| > dly] = algorithm would have
chosen y to process next, not u. Contradiction.

CPS 230 Topic 20: Shortest Paths in Graphs Page 27

All pairs shortest path (APSP) with nonnegative weights

e In the APSP problem, we want to compute the shortest path between any two vertices u,v € V.
— The output has size O(|V'|?), so we cannot hope to design a better than O(|V|?)-time algorithm.

e We can solve the problem simply by running Dijkstra’s algorithm |V'| times
= O(|V|-|E|log|V]) algorithm.

— In the worst case (dense graph) the running time is O(|V'|*log|V|).

e The Floyd-Warshall algorithm (see CLRS Exercise 25.2-4) runs in only O(|V|?) time by working on
adjacency matrix A:
FOR k =1 to |V| do
FOR i = 1 to |V| DO
FOR j = 1 to [V| DO
IF Ali,j] > Al k] + Alk,j]
THEN
Ali, 7] = Ali, k] + Alk, j]
FI
OD

OD
OD

e Correctness:

— We prove correctness by induction.

— We will prove that, after each iteration of the outer loop on k, the following invariant holds:
After the kth iteration (out of |V), A7, j] contains the length of the shortest path from v; to
v; that (apart from v; and v;) only contains vertices of index at most .

—> When algorithm terminates we have solved APSP.

— Proof:

* Invariant holds initially for £ = 0 (i.e., we start with adjacency matrix A, and the only
allowed path from v; to v; is the edge from v; to v;).

* When “adding” vertex with index &, we explicitly check all new paths between v; and v,
that pass through vy, for all |[V|? pairs of v; and v;.

e Note:

— We can easily produce adjacency-matrix from adjacency list in O(|V?|) time.

— Algorithm runs in O(|V|?) time, even if the graph is sparse. Using algorithm based on Dijkstra’s
algorithm we will get much better performance for sparse graphs.

— Using a Fibonacci heap, in which DECREASE-KEY operations take constant time amortized,
Dijkstra’s algorithm can be improved to O(|V[?log |[V| + |V|- |E|) = O(|V]?) time.

CPS 230 Topic 20: Shortest Paths in Graphs Page 28

