Topic 20: Shortest Paths in Graphs (CLRS 24.0-24.3, 25.2)

CPS 230, Fall 2001

Digraph G = (V, E) with weight function $W : E \to \Re$

Weight of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

"Shortest" path = path of minimum weight.

Applications

- Static/dynamic network routing
- Robot motion planning

- Different variants of shortest path problem:
 - Single pair shortest path: Find shortest path from u to v.
 - Single source shortest path (SSSP): Find shortest path from source s to all vertices $v \in V$.
 - All pair shortest path (APSP): Find shortest path from u to v for all $u, v \in V$.

• Note:

- No algorithm is known for computing a single pair shortest path better than solving the ("bigger") SSSP problem.
- APSP can be solved by running SSSP |V| times. \implies Lets focus on the SSSP problem.

Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

If some subpath were ${\bf not}$ a shortest path, we could substitute the shorter subpath and create an even shorter total path. \Box

Triangle Inequality

Definition: $\delta(u, v) \equiv \text{weight of a shortest path from } u \text{ to } v.$

Theorem: $\delta(u,v) \leq \delta(u,x) + \delta(x,v)$

Proof: Shortest path $u \to \cdots \to v$ is no longer than any other path $u \to \cdots \to v$. In particular, it is no longer than the path concatenating the shortest path $u \to \cdots \to x$ with the shortest path $x \to \cdots \to v$.

Is shortest-path well-defined?

Negative weight cycle \Rightarrow no shortest path.

Argument: Can shorten path by traversing cycle. \Box

Bellman-Ford Algorithm

Most basic "single-source" shortest-**paths** algorithm

- Finds shortest path weights from specified source s to all $v \in V$
- Maintains estimate d[v] of path length from s to v, which is updated iteratively
- Actual paths easily reconstructed (CLRS §24.3)

Bellman-Ford Algorithm

```
Bellman-Ford(G, w, s)
    1 for each v \in V
              \mathbf{do}\ d[v] \leftarrow \infty
    3 \ d[s] \leftarrow 0 \Rightarrow \text{Initialize-Single-Source}(G, s)
    4 for i \leftarrow 1 to |V| - 1
              do for each edge (u, v) \in E \triangleright \text{Relax}
    5
                         do if d[v] > d[u] + w(u, v)
    6
                                then d[v] \leftarrow d[u] + w(u,v)
    8 for each edge (u, v) \in E
              do if d[v] > d[u] + w(u, v)
                     then no solution
   10
Why call it "Relax"? Chain is getting tighter!
```

"pressure". The pressure is relaxed by shortening the

Think of violations of $d[v] \leq d[u] + w(u, v)$ as

estimate of the distance from s to v.

Bellman-Ford Algorithm

Three code sections:

• Lines 1-3:

Initialize: d[v], which will converge to shortestpath values δ .

Lines 4 − 7:
Relax: For |V| − 1 times, do the following:
For each edge, do a relaxation step.

• Lines 8 − 10:

Test: Was a solution achieved (iff no negative-weight cycles)?

Bellman-Ford Algorithm: Running time

Running Time: $O(V \cdot E)$

- constants are good
- it is simple
- short code

very practical.

Bellman-Ford Algorithm Example

Bellman-Ford Algorithm Example

- Initialization. Put initial d values in nodes: $A \leftarrow 0$, rest $\leftarrow \infty$.
- 1st relaxation pass. Process edges in order (A, B), (A, C), (B, C), (B, D), (D, B), (D, C), (E, D), (B, E).
- 2nd relaxation pass. Process edges in same order. Only *D* changes.

Bellman-Ford Algorithm Example

• Can stop when no change is detected

d	A	B	C	D	E
init	0	∞	∞	∞	∞
pass 1	0	-1	2	1	1
pass 2	0	-1	2	-2	1
init pass 1 pass 2 pass 3	0	-1	2	-2	1

• The distances in each pass and the convergence speed of the algorithm depend on the order that the edges are processed.

Bellman-Ford Algorithm: Lemma

Lemma: $d[v] \ge \delta(s, v)$ always.

Proof:

- Initially true
- Let v be first vertex for which $d[v] < \delta(s, v)$, and let u be vertex that caused d[v] to change:

$$d[v] = d[u] + w(u, v)$$

• Then

$$d[v] < \delta(s, v)$$

 $\leq \delta(s, u) + \delta(u, v)$ (Triangle inequality)
 $\leq \delta(s, u) + w(u, v)$ (shortest path \leq specific
 $\leq d[u] + w(u, v)$ (v is first violation)

contradicts d[v] = d[u] + w(u, v) (above).

Therefore, once d[v] reaches $\delta(s, v)$, it can't change (since d[v] can only decrease, never increase).

Bellman-Ford Algorithm: Correctness

Claim: Bellman-Ford correct (i.e., after |V| - 1 passes, all the d values are correct)

Proof: Let v be any vertex, and consider a shortest path from s to v (assuming no neg-weight cycles):

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v$$

• Initially, d[s] = 0 is correct (and doesn't change thereafter since the algorithm never increases d)

Bellman-Ford Algorithm: Correctness

Proof: (continued)

• After 1 pass through edges, $d[v_1]$ is correct (and doesn't change thereafter)

(d[s] is correct, and by the optimal substructure, the shortest distance is $w(s, v_1)$. 1st pass sets $d[v_1] \leftarrow d[s] + w(s, v_1)$, which is the right answer.)

• After 2 passes through edges, $d[v_2]$ is correct (and doesn't change thereafter)

:

- Terminates in |V| 1 passes. Why? If no negative-weight cycles:
 - every shortest path is **simple** (no cycles)
 - longest simple path has |V|-1 edges

Bellman-Ford Algorithm: Correctness

Proof: (continued)

- Thus if no neg-weight cycles, all the d[v] converge in |V|-1 passes. Equivalently, if a value d[v] fails to converge after |V|-1 passes, \exists neg-weight cycle.
- Last part of algorithm tests for success by seeing if another pass would change anything.

The converse is also true:

If \exists neg-weight cycle reachable from s, then some value d[v] fails to converge after |V|-1 passes.

(Proof left as exercise.) (CLRS Theorem 24.4.)

So... Bellman-Ford can be used to check for negative-weight cycles.

SSSP in DAG

- If graph is acyclic, we can solve SSSP by relaxing outgoing edges from vertices in the topological sort order of the vertices.
- Running time is O(|E|).

Dijkstra's Algorithm

Dijkstra's Algorithm:

- Non-negative edge weights
 ⇒ shortest paths always exist.
 (If there are no negative weights, Dijkstra's algorithm is faster than Bellman-Ford.)
- Like breadth-first-search
 (If all weights = 1, use BFS, otherwise Dijkstra.)
- Use for Q a priority queue keyed by d[v]. Greedy, like Prim's algorithm for MST BFS used FIFO queue

Dijkstra's Algorithm: Pseudocode

```
DIJKSTRA(G, w, s)
1 for each v \in V
2 do d[v] \leftarrow \infty
3 d[s] \leftarrow 0
4 S \leftarrow \emptyset
5 Q \leftarrow V
6 while Q \neq \emptyset
7 do u \leftarrow \text{Extract-Min}(Q)
8 S \leftarrow S \cup \{u\}
9 for each v \in Adj[u]
10 do if d[v] > d[u] + w(u, v)
11 then d[v] \leftarrow d[u] + w(u, v)
```

What is line 7 doing? What is line 11 doing?

Dijkstra's Algorithm: Notes

Observe:

- relaxation step
- setting d[v] updates Q (Decrease-Key operation)
- similar to Prim's minimum-spanning-tree algorithm

Dijkstra's Algorithm

Example:

Another Example of Dijkstra's Algorithm

CPS 230

Dijkstra's Algorithm: Run-Time Analysis

- \bullet Extract-Min executed |V| times
- Decrease-Key executed |E| times

$$Time = |V| \cdot T_{\text{EXTRACT-MIN}} + |E| \cdot T_{\text{DECREASE-KEY}}$$

Analysis: Look at different Q implementations.

Priority queue	$T_{\rm EXTRACT-MIN}$	$T_{\text{DECREASE-KEY}}$	Total
	O(V)	O(1)	$O(V ^2)$
binary heap	$O(\log V)$	$O(\log V)$	$O(E \log V)$
Fibonacci heap	$O(\log V)$	O(1)	$O(V \log V + E)$
	amortized	amortized	worst case

Dijkstra's Algorithm: Analysis

• Q = unsorted array:

scan to find minimum
just index and update to change key

 $\bullet Q = \text{Fibonacci heap}$

Note advantage of amortized analysis:

Can use amortized Fibonacci heap bounds in analysis, as if they were worst-case bounds, and get (real) worst-case bounds on aggregate running time.

Dijkstra's Algorithm: Correctness

Correctness: Prove that whenever u is added to S, $d[u] = \delta(s, u)$

Proof:

- Note that $\forall v \ d[v] \geq \delta(s, v)$
- Let u be first vertex added to S such that there is a path from s to u of length shorter than d[u] \Longrightarrow $d[u] > \delta(s, u)$
- Let's consider the set S immediately before u is processed (i.e., u is not yet in S, but is about to be picked next):

Dijkstra's Algorithm: Correctness

(Proof continued)

• Let y be first vertex $\in V - S$ on actual shortest path from s to u

$$\implies d[y] = \delta(s, y)$$

Because:

- -d[x] is set correctly for y's predecessor $x \in S$ on the shortest path (by choice of u as first choice for which that's not true)
- When we put x into S, we relaxed (x, y), giving d[y] its correct value

Dijkstra's Algorithm: Correctness

(Proof continued)

$$d[u] > \delta(s, u)$$

 $= \delta(s, y) + \delta(y, u)$ (optimal substructure)
 $= d[y] + \delta(y, u)$
 $\geq d[y]$ (no negative weights)

• But $d[u] > d[y] \implies$ algorithm would have chosen y to process next, not u. Contradiction.

All pairs shortest path (APSP) with nonnegative weights

- In the APSP problem, we want to compute the shortest path between any two vertices $u, v \in V$.
 - The output has size $O(|V|^2)$, so we cannot hope to design a better than $O(|V|^2)$ -time algorithm.
- We can solve the problem simply by running Dijkstra's algorithm |V| times
 - $\implies O(|V| \cdot |E| \log |V|)$ algorithm.
 - In the worst case (dense graph) the running time is $O(|V|^3 \log |V|)$.
- The Floyd-Warshall algorithm (see CLRS Exercise 25.2-4) runs in only $O(|V|^3)$ time by working on adjacency matrix A:

```
FOR k=1 to |V| do

FOR i=1 to |V| DO

FOR j=1 to |V| DO

IF A[i,j] > A[i,k] + A[k,j]

THEN

A[i,j] = A[i,k] + A[k,j]
FI
OD
OD
```

• Correctness:

- We prove correctness by induction.
- We will prove that, after each iteration of the outer loop on k, the following *invariant* holds: After the kth iteration (out of |V|), A[i,j] contains the length of the shortest path from v_i to v_j that (apart from v_i and v_j) only contains vertices of index at most k.
 - ⇒ When algorithm terminates we have solved APSP.
- Proof:
 - * Invariant holds initially for k = 0 (i.e., we start with adjacency matrix A, and the only allowed path from v_i to v_j is the edge from v_i to v_j).
 - * When "adding" vertex with index k, we explicitly check all new paths between v_i and v_j that pass through v_k , for all $|V|^2$ pairs of v_i and v_j .

• Note:

- We can easily produce adjacency-matrix from adjacency list in $O(|V^2|)$ time.
- Algorithm runs in $O(|V|^3)$ time, even if the graph is sparse. Using algorithm based on Dijkstra's algorithm we will get much better performance for sparse graphs.
- Using a Fibonacci heap, in which Decrease-Key operations take constant time amortized, Dijkstra's algorithm can be improved to $O(|V|^2 \log |V| + |V| \cdot |E|) = O(|V|^3)$ time.