CPS296.2 Advance Topics in CPS: Mesh Generation Homework \# 1

Due date: September 9, Monday, the beginning of the class.
Credits: 10 full +4 bonus

1. (two credits) Show that the following procedure returns twice the signed area of a given triangle $\triangle(a b c)$.

$$
\begin{aligned}
& \operatorname{AREA}\left(a, b, c \in \mathbb{R}^{2}\right) \\
& \quad \text { return }\left(c_{y}-a_{y}\right)\left(b_{x}-a_{x}\right)-\left(b_{y}-a_{y}\right)\left(c_{x}-a_{x}\right) ;
\end{aligned}
$$

2. (two credits) Prove or disprove: The dual graph of the triangulation of a monotone polygon is always a chain, that is any node in this graph has degree at most two.
3. (four credits) Let K be a triangulation of a set of n points in the plane. Let ℓ be a line that avoids all points. Prove that ℓ intersects at most $2 n-4$ edges of K and that this upper bound is tight for every $n \geq 3$.
4. (four credits) A k-coloring of a graph $G(V, E)$ is a function $\gamma: V \rightarrow\{1,2, \ldots, k\}$ such that $\gamma(u) \neq \gamma(v)$ if $(u, v) \in E$. Prove that a planar triangulation has a 6 -coloring.
5. (two credits) An ear is a triangle bounded by a diagonal and two polygon edges. Prove that every triangulation of an n-gon has to have at least one ear, provided $n \geq 4$.
