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Topic 13: Amortized Analysis

(CLRS 17)

CPS 230, Fall 2001

Amortized Analysis

After discussing algorithm design techniques (such as dynamic programming and greedy
algorithms), we now return to data structures and discuss a new analysis method—
amortized analysis.

Until now we have seen a number of data structures and have analyzed the worst-case
or average-case running time of each individual operation.

Sometimes the cost of an operation varies widely, so that that worst-case running
time is not really a good cost measure. On the other hand, average-case analysis is
subject to probability assumptions about an input distribution or the randomness in
the algorithm itself. There is no worst-case guaranteed bound on performance.

Sometimes the cost of every single operation is not so important

— For example, the total cost of a series of operations can be more important, as
when using priority queue to sort.

We may want to analyze the worst-case running time of one single operation averaged
over a sequence of operations.

— Note: We are not interested in an average-case analyses that depends on some
input distribution or random choices made by algorithm.

To capture thus we define amortized time.

If any sequence of n operations on a data structure takes < 7'(n) time,
then the amortized time per operation is T'(n)/n

— Equivalently, if the amortized time of one operation is U(n), then any sequence
of n operations takes < n - U(n) time.

Again keep in mind: The average is over a worst-case sequence of n operations

— not the average for some input distribution (as in quicksort)

— not the average over random choices made by algorithm (as in skip lists)



1.1 Example: Stack with MuLTIPOP

e As we know, a normal stack is a data structure with operations

— PusH: Insert new element at top of stack
— Pop: Delete top element from stack

e A stack can easily be implemented (using a linked list) such that PusH and Pop each
take O(1) time per operation.

e Consider the addition of another operation:
— Murripopr(k): PoOP k elements off the stack.
e Analysis of a sequence of n operations:

— One MULTIPOP can take O(n) time => O(n?) running time.

— Better bound: Amortized running time of each operation is O(1) = O(n) run-
ning time.
*x Each element can be popped at most once each time it is pushed

- Number of POP operations (including the ones done by MuLTIPOP) is
bounded by n

- Total cost of n operations is O(n)
- Amortized cost (of one operation) is O(n)/n = O(1).

1.2 Example: Binary counter

e Consider the following (somewhat artificial) data structure problem: Maintain a binary
counter under n INCREMENT operations (assuming that the counter value is initially
0)

— Data structure consists of an (infinite) array A of bits such that A[i] is either 0
or 1.
— AJ0] is lowest-order bit, so the value of counter is z = Y, Ali] - 2¢

— INCREMENT operation:

Al0] = AJ0] + 1

i=0

WHILE A[i{] =2 DO { carry a1 }
Ali+1]=Ali+1]+1
Ali] =0
1=1+1

OD




e The running time of INCREMENT is the number of iterations of while loop, plus 1.
Example (Note: Bit furthest to the right is A[0]):

z=47= A=1(0,...,0,1,0,1,1,1,1)
z=48 = A=(0,...,0,1,1,0,0,0,0)
z=49= A=(0,...,0,1,1,0,0,0,1)

INCREMENT from z = 47 to x = 48 has cost 5

INCREMENT from z = 48 to x = 49 has cost 1
e Analysis of a sequence of n INCREMENTS

— Number of bits in representation of nislogn == n operations cost O(nlogn).
— Better: Amortized running time of INCREMENT is O(1)
= O(n) running time:
+ A[0] flips on each increment (n times in total)
* A[1] flips on every second increment (n/2 times in total)
x A[2] flips on every fourth increment (n/4 times in total)

* Ali] flips on every 2'th increment (n/2° times in total)

U
logn n
« Total running time: T'(n) = 5
i=0
logn 1 i
= 12 (3)
i=0
= 0(n)

2 Potential Method

e In the two previous examples we basically just did a careful analysis to get O(n) bounds
leading to O(1) amortized bounds.

— book calls this the aggregate method of amortized analysis.

e In aggregate method all operations have the same amortized cost (total cost divided
by n)

— other and more sophisticated amortized analysis methods allow different opera-
tions to have different amortized costs.

e Potential method:

— Idea is to overcharge some operations and store the overcharge as credits or po-
tential, which can then help pay for expensive later operations.
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— Leads to equivalent but slightly different definition of amortized time.
e Consider performing n operations on an initial data structure D

— D; is data structure after ith operation.
— ¢; is actual cost (time) of ith operation, 1 =1,2,...,n.
= Total cost of n operations is Y . .
e We define potential function mapping D; to R. (® : D; — R)
— ®(D;) is potential associated with D;
e We define amortized cost ¢; of ith operation as ¢; = ¢; + ®(D;) — ®(D;_1)

— ¢; is sum of real cost and increase in potential

U

— If potential decreases, the amortized cost is lower than the actual cost (i.e., we
use saved potential/credits)

— If potential increases, the amortized cost is larger than the actual cost (i.e., we
overcharge operation to save potential/credits).

e Key is that, as previously, we can bound the total cost of all n operations by the total
amortized cost of all n operations:

n

ch = Z(@‘*’(I)(Difl)_(I)(Di))

i=1

— B(Dy) - B(D)+ Y e

which implies that
PIEEDILE
i=1 i=1
if ®(Dy) =0 and ®(D,) > 0. Or actually all we need is for ®(D,,) > ®(Dy).

e This relation is consistent (at least in one direction) with the intuition we were trying
to capture at the beginning of this lecture note, assuming that ®(D,) > ®(Dy). If
each ¢; is the same, then we have

1n
C; > — Ck.
z_n;k

e The hard (tricky) part of amortized analysis is defining the potential function appro-
priately to give the desired amortized bounds. We want the potential function to be
large when we are about to do an expensive operation. Immediately afterwards, we
want the potential to be small, so that the decrease in potential pays for the bulk of
that operation.



2.1

Example: Stack with multipop

e Define ®(D;) to be the size of stack D; = ®(Dy) =0 and ®(D;) >0

e Amortized costs:

2.2

2.3

— PusH:
61' = ¢+ @(Dz) — (I)(D,,l)
= 141
2
= 0(1)
— Pop
= 1+(-1)
=0
= 0(1)
— Mucrtipopr(k):
6i = ¢ + (I)(DZ) — (I)(D,_l)
= k+(-k)
=0
= 0(1).

Total cost of n operations: Y . ¢, < D" & = O(n).

Example: Binary counter
Define ®(D;) = 3.0, Ali] =  ®(Dy) = 0 and ®(D;) > 0

i>0
— ®(D;) is the number of ones in counter.

Amortized cost of ith operation: & = ¢; + ®(D;) — ®(D;_1)
— Consider the case where first &k positionsin A are 1: A =(0,0,---,1,1,1,1,---,1)

— In thiscase ¢; = k + 1

— ®(D;)—®(D;_1) = —k+1 since the first k£ positions of A are 0 after the increment
and the (k + 1)st position is changed to 1. (The other positions are unchanged.)

= ¢=k+1+(-k+1)=2=0(1).

Total cost of n increments: > ¢ < > r & = O(n).

Dynamic Tables

We want to maintain a table (array) dynamically. Inserts and Deletes work as follows:
When an insert causes the table to overflow, the table size is doubled (expansion).
When a delete causes the table to become less than one-quarter full, the table size is
cut in half (contraction).



e We want to show that the amortized cost for an insert or delete is O(1), even though
the worst-case time is O(n).

e Define
®(D) = |2 X (# elements in table) — (size of table)|,

so that the potential is high when the table is near-full or relatively sparse, which is
when the expensive operations of expansion or contraction are done. (The book uses
a slightly more complicated potential function.)

e Let’s say that the costs of expansion and contraction are each equal to the number of
elements in the table at that time.

e Let’s examine what happens when we insert an element.

— If there is room in the table, the element is placed in the table; no expansion is
done.

ék = Ci —+ ((I)(DIH—I — (D(Dk))
< 142
= 3

— If there is no room in the table, the table is doubled and the element is placed in
the newly expanded table.

ék = Ci + (CI)(Dk;—i—l — (I)(Dk))
(# elements in table) + 1 + (0 — (# elements in table))
1

e Now let’s examine what happens when we delete an element.

— If the table remains at least one-quarter full after the deletion, there is no need
to contract the table.

ék = Ci —+ ((P(DIH—I — @(Dk))
< 142
= 3

— If the deletion causes the table to become less than one-quarter full, then the
table size is contracted to half its former size.

ek = ¢+ (P(Dpg1 — 2(Dy))

< (# elements in table) + 1 + (2 — 2(# elements in table))
= 3 — (# elements in table) (1)
< 3

e The potential function in the book increases at only half the rate that ours does as the
table occupancy decreases to one-quarter full, so the bound they get for (1) is simply 3.
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2.4

Let’s look at how sensitive the analysis is to our decision to contract the table when it
gets to less than one-quarter full. What if we decided to halve it when it got less than
one-half full?

Consider a sequence of operations that causes the table to double on the last operation.
(The number of elements is 1 more than a power of 2.) Then consider the following
subsequent sequence of operations applied to this data structure: two deletes followed
by two inserts followed by two deletes followed by two inserts, and so on. The second
of each pair of deletes will cause a contraction, and the second of each pair of inserts
will cause an expansion

= ((n) amortized time (not O(1)!!!).

Therefore we have to be careful in our algorithm design in order to get a good amortized
bound.

Notes on amortized cost
Amortized cost depends on choice of ®.
Different operations can have different amortized costs.
Often we think about potential/credits as being distributed on certain parts of data

structure.

In multipop example:

— Every element holds one credit.

— PusH: Pay for operation (cost 1) and for placing one credit on new element
(cost 1).

— Pop: Use credit of removed element to pay for the operation. Amortized cost is
0.

— MurtirpopP: Use credits on removed elements to pay for the operation.
In counter example:

— Every 1 in A holds one credit.
— Change from 1 — 0 paid using credit.

— Change from 0 — 1 paid by INCREMENT; pay one credit to do the flip and place
another credit on the newly created 1.

= INCREMENT cost O(1) amortized (at most one 0 — 1 change).

e Book calls this the accounting method

— Note: Credits only used for analysis and is not part of data structure

e Hard part of amortized analysis is often to come up with potential function ®



— Some people prefer using potential function (potential method), some prefer think-
ing about placing credits on data structure (accounting method)

— Accounting method often good for relatively easy examples.

e Next time we will discuss an elegant “self-adjusting” search tree data structure with
amortized O(logn) bonds for all operations (splay trees).

Summary

e Motivation for amortized analysis:
— A way of expressing that even though the worst-case performance of an operation
can be bad, the total performance of a sequence of operations cannot be bad.

— One way of thinking of amortized time is as being an “average”: If any sequence
of n operations takes less than T'(n) time, the amortized time per operation is

e We formally defined amortized time using the idea that we overcharge some opera-
tions and store the overcharge as credits or potential that can then help pay for later
operations (potential method)

— Consider performing n operations on an initial data structure Dy
— D, is data structure after ith operation.

— ¢; is actual cost (time) of ith operation.

— Potential function: ® : D; — R

— ¢; amortized cost of ith operation: ¢ = ¢; + ®(D;) — ®(D;—_1)

— Given ®(Dy) =0 and ®(D;) > 0, we have > " ¢; <> " | ¢

e We also discussed three examples of amortized analysis:

— Stack with MurtIipoP (O(n) worst-case time, O(1) amortized time).
— INCREMENT on binary counter (O(logn) worst-case time, O(1) amortized time).

— Dynamic table with inserts and deletes (O(n) worst-case time, O(1) amortized
time).

In each case, we could argue for O(1) amortized performance without actually do-
ing potential calculation—we just think about potential/credits as being distributed
on certain parts of the data structure and let operations put and take credits while
maintaining some invariant (accounting method).



