1

Topic 11: Dynamic Programming
(CLRS 15.0-15.2)

CPS 230, Fall 2001

Dynamic programming

e We have previously discussed how divide-and-conquer can often be used to obtain

1.1

efficient algorithms.
— Examples: matrix multiplication, merge sort, quicksort,....

Sometimes direct use of divide-and-conquer does not yield efficient algorithms—in fact,
sometimes it results in really bad algorithms.

Today we will discuss a technique which can often be used to improve upon an inefficient
divide-and-conquer algorithm.

— The technique is called “Dynamic programming” for historical reasons. It really
is neither especially “dynamic” nor especially “programming” related.

— We will discuss dynamic programming by looking at an example.

Computing Fibonacci numbers

The Fibonacci numbers F;, are defined by the well-known recurrence

Fn71+Fn72 if n 2 2
F=41 ifn=1 (1)
0 ifn=20

The sequence forn =0,1,2,3,...is0,1,1, 2, 3,5, 8, 13, 21, 34,

The sequence is related to rabbits, how needles arrange themselves on pine cones,
aesthetics, and graduate students, among other things.

A naive recursive program to compute Fibonacci numbers based upon (1) would require
O(F,) time, which is exponential in n!

The reason is that the same subproblem is solved multiple times. For example, to
compute F(6), we need to compute F'(5) and F(4). To compute F(7), we recompute
F(6) and F'(5). The waste compounds recursively!

e The obvious remedy is to store the value of each Fibonacci number in a table when it

1.2

is computed. Next time it is needed, we won’t have to recompute it from scratch, but
rather we can just look up its value in the table.
= O(n) time to compute F,!!!

As an aside, using generating functions or the trial-and-error method (see earlier hand-
out), we can derive a closed-form expression for F:

1 n R
Fn:%@ — ™), (2)

where ® = (1 +/5)/2 ~ 1.61803... and ® = —1/® ~ —0.61803 are the solutions to
the equation 1 — z — 22 = 0. We refer to ® as the golden ratio. Note that the second
term in (2) is exponentially small. We can compute F), simply by rounding ®"/+/5 to
the nearest integer.

Therefore, using a table to store subproblem solutions reduces the running time from
O(®") to O(n). Pretty big improvement!

Matrix-chain multiplication

Problem: Given a sequence of matrices A, Ay, As, ..., Ay, find the best way (using the
minimal number of multiplications) to compute their product.
— Isn’t there only one way? ((---((4; X Ag) X A3) X --+) X A,)
— No, matrix multiplication is associative;
e.g., Ay x (Ag x (A3 x (+-- x (A1 X A,) --+))) yields the same matrix.
— Different multiplication orders do not cost the same:

x Multiplying p X ¢ matrix A and ¢ x r matrix B takes p - ¢ - multiplications;
the result is a p x r matrix.

*x Consider multiplying 10 x 100 matrix A; with 100 x 5 matrix As and 5 x 50
matrix As.

— (A1 x Ag) x Az takes 10-100-5+ 10 -5 - 50 = 7500 multiplications.
— Ay x (A x Aj3) takes 100 -5 - 50 + 10 - 50 - 100 = 75000 multiplications.

In general, let A; be a p;_; X p; matrix.
— Ay, As, Az, ..., A, can be represented by the n + 1 integers pg, p1, P2, P3, - - -, Pn

Let m(i,j) denote the minimum number of multiplications needed to compute A; X
Ai—l—l X X A]

— We want to compute m(1,n).

e Divide-and-conquer solution/recursive algorithm:

— Divide the problem into j — 7 subproblems by considering the outer-level paren-
theses in all j—i possible positions. (E.g., (A; X Ajp1 X+ - X Ag) X (Agq1 X+ - - X Aj)
corresponds to multiplying a p; 1 X p; matrix by a p; X p; matrix.)

— Recursively find best way of solving subproblems. (i.e., find the best way of
computing A; x A;41 X --- X A and the best way of computing Ax 1 X Agio X

— Pick best solution.
e Algorithm expressed in terms of m(z, j):
o 0 ifi=7
m3) =\ min fm(i,) +mk +1,5) +pics e pi} i<
i<k<j

e Program:

MATRIX-CHAIN(4, 7)
IF ¢ = 5 THEN return 0
m(i,j) = oo
FOR k=i TO j5—-1DO
¢ = MATRIX-CHAIN(%, k) + MATRIX-CHAIN(k + 1,7) + pi_1 - Dk - Pj
IF ¢ < m(i,j) THEN m(i,j) = ¢
OD
Return m(i, j)
END MATRIX-CHAIN

Return MATRIX-CHAIN(1,n)

e Running time: Let T'(k) be the time to compute the optimal computation order for
the product of k& matrices. We define 7'(1) = 0.

T(n) = Zi(T(k) +T(n—k)+c)
= cn+2- nilT(k)
= T(n—1)+ct2T(n—1)
= 3T(n—1)+c
3¢ n—2
~ 33

e Easy to prove by induction or telescoping the recurrence.

e Problem is that, as in the Fibonacci example, we compute the same result over and
over again.

— Example: Recursion tree for MATRIX-CHAIN(1, 4)

14

AN

11 2,4 1,2 3,4 1,3 4.4

22 34 23 44 11 22 33 44 11 23 12 33

33 44 22 33 22 33 11 22

For example, we compute MATRIX-CHAIN(3,4) twice.

e Solution is to “remember” values we have already computed in an n x n table—
memoization

MATRIX-CHAIN(4, j)

IF % = 7 THEN return 0

IF m(i,j) < oo THEN return m(i,j) /* This line has changed */

FOR k=1itoj—1DO
¢ = MATRIX-CHAIN(¢, k) + MATRIX-CHAIN(k + 1, j) 4+ pi_1 - Dk - Pj
IF ¢ < m(i,j) THEN m(i,j) = ¢

OD

return m(i, j)

END MATRIX-CHAIN

FOR i=1 ton DO
FOR j =i to n DO
m(i, j) = oo
OD
OD

return MATRIX-CHAIN(1, n)

e Running time:

— O(n?) different calls to MATRIX-CHAIN(%, 7).
— The first time a call is made it takes O(n) time, not counting recursive calls.

— When a call has been made once it costs O(1) time to make it again.
= O(n?) time

— Another way of thinking about it: ©(n?) total entries to fill; it takes O(n) time
to fill each one.

1.3 Alternative view of Dynamic Programming

e Often (including in the book) dynamic programming is presented in a different way,
namely, as filling up a table from the bottom to the top.

e Matrix-chain example:

Key is that m(4, j) only depends upon m(i, k) and m(k + 1, 5) where : < k < j.

= If we have already computed m(i, k) and m(k + 1, j) for each k, then we can compute
m(i,7) in O(]j — ¢|) time by taking the appropriate minimum over all .

— We can easily compute m(i, i) for all 1 <i <n: m(i,i) =0

— Then we can easily compute m(i,7 + 1) forall1 <7 <n—1:
m(i, i+ 1) =m(i,i) + m@E+ 1,0+ 1) + pi_1 - ps - Pis1
— Then we can compute m(i,i +2) forall1 <i<n—2:
m(i,i+2) = min{m(i,7) + m(i+1,i+2)+pi_1-Di - Div2, m(E,i+1)+m(i+2,i+

2) 4+ pi1 - Piv1 - Div2}

— Until finally we compute m(1,n) and we're done.

— Computation order is indicated by the numbers in the slots below:

e Program:

— Computation orde

FOR i =1 ton DO
m(i,i) =0
OD
FORIl=1ton—1DO
FORi=1ton—1DO
j=1+1
m(i, j) = oo
FOR k=1toj—1DO
q=m(i, k) +m(k+1,5) +pi—1-Pr - pj
IF ¢ < m(i,j) THEN m(i,7) = ¢
oD
OD
OD

e Analysis:

— O(n?) entries, O(n) time to compute each = O(n?) total time.

e Note:

— I like recursive (divide-and-conquer) thinking, because you don’t need a new idea
(and write a totally new program)—just use table lookup!

— Book seems to like bottom-up method better.

1.4 Overview of dynamic programming

Dynamic programming is a way of improving on inefficient divide-and-conquer algorithms.
By “inefficient”, we mean that the same recursive call is made over and over.

e If same subproblem is solved several times, we can use table to store result of a sub-
problem the first time it is computed and thus never have to recompute it again.

e Alternatively, we can think about filling up a table of subproblem solutions from the

bottom up.

