Topic 19: Minimum Spanning Trees and
Union-Find

(CLRS 23, 21)

CPS 230, Fall 2001

Graphs

Last time we defined (weighted) graphs (either undirected or directed) and introduced
basic graph vocabulary (vertex, edge, degree, path, connected components of undi-
rected graphs, strongly connected components of directe graphs, ...).

We also discussed adjacency list and adjacency matrix representation

— Unless stated otherwise, we will use adjacency list representation, using O(|V| +
|E|) space.

We discussed O(|V| + | E|)-time breadth-first (BFS) and depth-first search (DFS) al-
gorithms and how they can be used to compute, e.g., connected components, shortest
path distances in unweighted graphs, and topological sorting.

We will now start discussing more complicated problems/algorithms on weighted graphs.

Minimum Spanning tree (MST)

Problem: Given a connected, undirected graph G = (V, E), where each edge (u,v) has
weight w(u,v). Find a tree T C E that connects all the vertices in V' such that it has
minimum weight w(T) = 3, ) er w(u, v).

Note: Problem is to find a spanning tree (acyclic set connecting all vertices) of minimum
weight. (We use the term minimum spanning tree as shorthand for minimum-weight
spanning tree).

MST problem has many applications in networking, communications, scheduling, ....
For example, think about connecting cities with the minimum amount of wire (cities
are vertices, weight of edges are distances between city pairs).



e Example:

— Weight of MST is 4 +8+7+94+2+4+1+2=37
— MST is not unique: e.g. (b,c) can be exchanged with (a, h)

2.1 PRIM’s algorithm
e (Greedy algorithm for computing MST:

— Start with spanning tree containing arbitrary vertex r and no edges.

— Grow a spanning tree by repeatedly adding the minimum weight edge that con-
nects some vertex in the current tree to some vertex not in the current tree.

e On the example, the greedy algorithm would work as follows (starting at vertex a):
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e Implementation:

— To find the minimum weight edge connected to the current tree, we maintain a
priority queue on the vertices not in the tree. The priority of a vertex is the weight
of the minimum weight edge that connects it to the current tree. (The priority is
+oo if there is no connecting edge.)

— We also maintain a pointer from the adjacency list entry of v to the entry for v
in the priority queue.

PRIM(r)

For each v € V DO
INSERT(Q, v, o0)

OD
DECREASE-KEY(Q, 1, 0)
WHILE @ not empty DO

u = DELETE-MIN(Q)
For each (u,v) € E DO
IF v € @ and w(u,v) < key(v) THEN
visit[v] = u
DECREASE-KEY(Q, v, w(u, v))
FI
OD
OD

e Analysis:

— While loop runs |V| times == we perform |V| DELETE-MIN’s

— We perform at most one DECREASE-KEY for each of the |E| edges
= Time = O(]V| x T(DELETE-MIN) + |E| x T(DECREASE-KEY)



Priority Queue | T(DELETE-MIN) | T(DECREASE-KEY) | Total time

array o(V]) o(1) o(vP)

binary heap O(log V) O(log V) O(|E|log V)
Fibonacci heap | ©(log|V]) 0(1) O(|V]log |V| + |E|)

e Correctness:
— As discussed previously, when we design a greedy algorithm, the hard part is often
to prove that it works correctly.

— We will prove a theorem below that allows us to prove the correctness of a general
class of greedy algorithms. First some definitions:

x A cut S is a partition of V into sets S and V' \ S
* A edge (u,v) crosses a cut Sifue SandveV\SorveSandueV\S
x A cut S respects a set T'C E if no edge in T crosses the cut

Example: Cut S respects T

V\S

e Theorem: If G = (V, E) is a graph such that T' C E is subset of some MST of G, and
S is a cut respecting 7" then there is an MST for G that contains 7" and the minimum
weight edge e = (u, v) that crosses S.

e Note: The correctness of Prim’s algorithm follows from the Theorem by induction: At
each step, let the cut S consist of the edges 7" in the current tree. Therefore, at every
step of the way in Prim’s algorithm, the current set 7' of edges chosen is a subset of
some MST. Thus, at the end, when 7" has n — 1 edges, T" must be an MST.

e Proof of theorem:
— Let T* be MST containing 7. Let e = (u,v) be the minimum weight edge that
crosses S.
— If e € T* we are done.
—Ife¢ T

% Since T™* is a spanning tree and is therefore connected, there must be (at least)
one other edge (x,y) € T* crossing the cut S such that there is a unique path



from w to v in T*.

x This path together with e forms a cycle

x If we remove edge (z,y) from 7* and add e instead, we still have spanning
tree

* The new spanning tree must have the same weight as 7™ since 7™ is an MST
and w(u,v) < w(z,y)
=  There is an MST containing 7" and e.

e The Theorem allows us to describe a very abstract greedy algorithm for MST:

T=40
While |T| < |V| — 1 DO

Find cut S respecting T’

Find the minimum weight edge e that
crosses S

T=TU{e}
OD

— Prim’s algorithm follows this abstract algorithm.

3 Kruskal’s Algorithm

e Kruskal’s algorithm is another implementation of the abstract algorithm.
e Idea in Kruskal’s algorithm:

— Start with |V| trees (one for each vertex).

— Consider edges E in increasing order; add edge if it connects two trees (in which
case we merge the two trees into one).

e Example:



e Correctness of Kruskal’s algorithm follows from Theorem: Suppose the minimum
weight edge connects two trees. Let the cut S consist of the vertices in one of the
two trees. Let T be the current set of edges chosen. The cut S respects 7. By the the-
orem, since the minimum weight edge crosses the cut S, there is an MST that contains
T and the minimum weight edge.

e Therefore, at every step of the way in Kruskal’s algorithm, the current set 1" of edges
chosen is a subset of some MST. Thus, at the end, when 7" has n — 1 edges, 7" must
be an MST.

e Implementation:



KRUSKAL

T=10
FOR each vertex v € V DO

MAKE-SET(v)

OD
Sort edges of E in increasing order by weight
FOR each edge e = (u,v) € E in order DO

IF FIND-SET(u) # FIND-SET(v) THEN
T=TU{e}
UNION-SET(u, v)
FI
OD

— We need (Union-Find) data structure that supports:

* MAKE-SET(v): Create set consisting of v
* UNION-SET(u,v): Unite set containing u and set containing v

* FIND-SET(u): Return unique representative for set containing u

— We use O(|E|log|E|) time to sort edges, and we perform |V| MAKE-SET, |V|—1
UNION-SET, and 2|E| FIND-SET operations.

3.1 Union-Find

e Simple solution to Union-Find problem (maintain set system under FIND-SET and
UNION-SET)

— Maintain elements in same set as a linked list with each element having a pointer
to the first element in the list (unique representative)

Example:
Sets
5 4 9 @
12 7
Representation

e

— MAKE-SET(v): Make a list with one element = O(1) time.

— FIND-SET(u): Follow pointer and return unique representative = O(1) time.

\]



— UNION-SET(u,v): Link first element in list with unique representative FIND-
SET(u) after last element in list with unique representative FIND-SET(v)
= O(|V|) time (since we have to update all unique representative pointers in
the list containing u)

e With this simple implementation, the |[V| — 1 UNION-SET operations in Kruskal’s
algorithm may take O(|V'|?) time.

e We can improve the performance of UNION-SET with a very simple modification: al-
ways link the smaller list after the longer list (i.e., update the pointers of the smaller
list)

— One UNION-SET operation can still take O(|V|) time, but the |V|—1 UNION-SET
operations collectively take a total of O(|V|log|V|) time.
* Total time is proportional to number of unique representative pointer changes.

*x Consider any element u:
After pointer for u is updated, u belongs to a list of size at least double the
size of the list it was in previously.
= After k pointer changes, u is in list of size at least 2*.
= u’s pointer can be changed at most log|V| times.

e With improvement, Kruskal’s algorithm runs in time O(|E|log|E| + |V|log|V|) =
O((|E|+|V|)log|E]) = O(|E|log|V]), like Prim’s algorithm with the standard priority
queue implementation.

e Note: Very recently an O(|V| + |E|) randomized minimum spanning tree algorithm
has been developed.

4 Improved Union-Find

e It turns out that Union-Find can be improved (but without leading to an improvement
of Kruskal’s algorithm, unless the edges are provided for free in sorted order).

— Linked list representation can also be viewed as trees of height 1.

A /N

© @ 0 © @ & @

Example:

— Instead of updating root pointers when performing UNION-SET, we could just link
one tree below the root of the other.

Example: UNION-SET(2,5)



@ & @

UNION-SET and FIND-SET take O(log|V|) if we always insert the smaller tree
below the larger tree, since every tree will have height O(log|V|) (prove it!)
—> |E| FIND-SET operations takes O(|E|log|V])) time.

— If we furthermore perform path compression, |E| Find-set operations can be per-
formed even faster

Path-compression: During each FIND-SET, as we follow the path to the root (the
set’s unique representative), we link the traversed nodes directly to the root:

Example:

@ Find-set(x) @m
LI

Note that a lot of paths are shortened (decreasing time spent on future FIND-SET
operations) without using extra time

It can be shown that O(|E|log" |V|) is the total time used on the |E| FIND-SET
operations

4.1 log* n, an extremely slowly growing function

21 ifi=0
e Consider g(n) ={ 22 ifi=1
20(n=1)  if > 2
9(0) 2
g(1) = 22=4
g(2) = 2 =2"=16
22
g(3) = 22 =2'°=65536

g(i) = 2% (Stack of 2s of height i + 1)
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g(n) is an extremely fast growing function.

Define log™ n { loglog®™Y n  otherwise

log*n = min{i > 0 | log®” n < 1}.

—> log" n is minimum number of times we need to take log to get below 1.
—> log" n is inverse of g(n).

= log* n extremely slow growing function.

log*n < 5 for all practical values of n.

One can even prove that with path-compression the total time spent on |E| FIND-SET
operations is O(|E|-«(|V])), where a(n) (a functional inverse of Ackermann’s function)
is a function growing even more slowly than log* n

— a(n) < 4 for all practical values of n.
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