Topic 15: Heaps and Heapsort

(CLRS 6)

CPS 230, Fall 2001

1 Introduction

- Data structures play an important role in algorithms design.
 - we will now discuss priority queues and structures for maintaining ordered sets.

2 Priority Queue

- A priority queue supports the following operations on a set S of n elements:
 - Insert: Insert a new element e in S.
 - FINDMIN: Return the minimal element in S.
 - Delete Teminimal element in S.
- Sometimes we are also interested in supporting the following operations:
 - Change the key (priority) of an element in S.
 - Delete: Delete an element from S.
- We can obviously sort using a priority queue:
 - Insert all elements using Insert.
 - Delete all elements in order using FINDMIN and DELETEMIN.
- Priority queues have many other applications, e.g. in scheduling, discrete event simulation, and graph algorithms.

2.1 Array or List implementations

• The first implementation that comes to mind is sorted array:

- FINDMIN can be performed in O(1) time.
- Deletement and Insert takes O(n) time since we need to expand/compress the array after inserting or deleting element.

- If the array is unordered (i.e., not sorted), then all operations take O(n) time.
- We could use a doubly-linked sorted list instead of an array to avoid the O(n) cost of expansion or compression.
 - But Insert will still take O(n) time.

2.2 Heap implementation

- One way of implementing a priority queue is using a heap.
 - Note: We use a min-heap; the book describes a max-heap.
- Heap definition:
 - Perfectly balanced binary tree.
 - * Lowest level can be incomplete (but filled from left-to-right).
 - For all non-root nodes v, we have $key(v) \ge key(parent(v))$.
- Example:

- Heap can be implemented (stored) in two ways (at least):
 - Using pointers.
 - In an array level-by-level, left-to-right. The array representation of previous example is pictured below. The left son is pictured on the same vertical level as the parent, and the right son is pictured lower.

- * Note the nice property that the left and right children of the node stored in entry i are stored in entries 2i and 2i + 1, respectively.
- Properties of heap:
 - Height $\Theta(\log n)$.
 - Minimum of S is stored in root.

• Operations:

- Insert

- * Insert the new element in a new leaf at the leftmost possible position on lowest level.
- * Repeatedly swap the newly inserted element with the element in its parent node until the heap order is reestablished (UP-HEAPIFY).

Example: Insertion of 4

- FINDMIN

* Return root element.

- DeleteMin

- * Delete element in root.
- * Move element from rightmost leaf on lowest level to the root (and delete leaf).
- * Repeatedly swap the element with the smaller of its two children until the heap order is reestablished (DOWN-HEAPIFY).

Example:

- All operations traverse at most one root-leaf path $\implies O(\log n)$ running time..
- Change and Delete can be handled similarly in $O(\log n)$ time.
 - Assuming that we know the element to be changed/deleted.

2.3 Heapsort

- Sorting using a heap, which we call *Heapsort*, takes $\Theta(n \log n)$ time.
 - $-n \cdot O(\log n)$ time to insert all elements into the heap.
 - $-n \cdot O(\log n)$ time to output the sorted elements by a sequence of Deletemin operations.
- Sometimes we would like to build a heap in O(n) time rather than in $O(n \log n)$ time. For example, we can get a constant-factor improvement in sorting if we come up with a very efficient way of initially constructing the heap of n elements. The Deletement operations still take $O(n \log n)$ time.

- Place elements in any order in a perfectly balanced tree.
- DOWN-HEAPIFY all nodes level-by-level, bottom-up.

Correctness:

- Induction on height of tree: When doing level i, all trees rooted at level i-1 are heaps.

Analysis to show O(n) time for DOWN-HEAPIFY:

- Define leaves to be on level 1 (root on level $\log n$).
- -n elements $\Longrightarrow \leq \lceil \frac{n}{2} \rceil$ leaves $\Longrightarrow \lceil \frac{n}{2h} \rceil$ elements on level h.
- Cost of down-heapify on a node on level h is h.
- Total cost: $\Theta\left(\sum_{i=1}^{\log n} h \cdot \lceil \frac{n}{2^h} \rceil\right) = \Theta\left(n \sum_{i=1}^{\log n} \frac{h}{2^h}\right)$.
- $\sum_{i=1}^{\log n} \frac{h}{2^h} < 2$, and thus cost of Down-Heapify is $\Theta(n)$. Proof:
 - * Assume |x| < 1 and differentiate $\sum_{h=0}^{\infty} x^h = \frac{1}{x-1}$.

* Derivative of LHS is
$$\sum_{h=0}^{\infty} hx^{h-1}$$
, and derivative of RHS is $\frac{1}{(x-1)^2}$.

$$\implies \sum_{h=0}^{\infty} hx^h = \frac{x}{(x-1)^2} \implies \sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1/2-1)^2} = 2.$$