Topic 15: Heaps and Heapsort
(CLRS 6)

CPS 230, Fall 2001

1 Introduction

e Data structures play an important role in algorithms design.

— we will now discuss priority queues and structures for maintaining ordered sets.

2 Priority Queue

e A priority queue supports the following operations on a set S of n elements:

— INSERT: Insert a new element e in S.
— FINDMIN: Return the minimal element in S.

— DELETEMIN: Delete the minimal element in S.

Sometimes we are also interested in supporting the following operations:

— CHANGE: Change the key (priority) of an element in S.

— DELETE: Delete an element from S.

We can obviously sort using a priority queue:

— Insert all elements using INSERT.

— Delete all elements in order using FINDMIN and DELETEMIN.

Priority queues have many other applications, e.g. in scheduling, discrete event simulation,
and graph algorithms.

2.1 Array or List implementations

e The first implementation that comes to mind is sorted array:

‘1‘3‘5‘ 6‘ 7‘ 8‘ 9‘11‘12‘15‘17‘

— FINDMIN can be performed in O(1) time.

— DELETEMIN and INSERT takes O(n) time since we need to expand/compress the array
after inserting or deleting element.



e If the array is unordered (i.e., not sorted), then all operations take O(n) time.

e We could use a doubly-linked sorted list instead of an array to avoid the O(n) cost of expansion
or compression.

— But INSERT will still take O(n) time.

2.2 Heap implementation
e One way of implementing a priority queue is using a heap.
— Note: We use a min-heap; the book describes a max-heap.

e Heap definition:

— Perfectly balanced binary tree.
* Lowest level can be incomplete (but filled from left-to-right).

— For all non-root nodes v, we have key(v) > key (parent (v)).

e Example:

e Heap can be implemented (stored) in two ways (at least):

— Using pointers.

— In an array level-by-level, left-to-right. The array representation of previous example is
pictured below. The left son is pictured on the same vertical level as the parent, and
the right son is pictured lower.

215(3]9(19(11|4|15/14

N@

* Note the nice property that the left and right children of the node stored in entry ¢
are stored in entries 2¢ and 2¢ + 1, respectively.

e Properties of heap:

— Height ©(logn).

— Minimum of S is stored in root.



e Operations:

— INSERT

* Insert the new element in a new leaf at the leftmost possible position on lowest level.

* Repeatedly swap the newly inserted element with the element in its parent node
until the heap order is reestablished (UP-HEAPIFY).

Example: Insertion of 4

— FINDMIN

* Return root element.
— DELETEMIN

*x Delete element in root.

* Move element from rightmost leaf on lowest level to the root (and delete leaf).

* Repeatedly swap the element with the smaller of its two children until the heap
order is reestablished (DOWN-HEAPIFY).

Example:

e All operations traverse at most one root-leaf path —  O(logn) running time..
e CHANGE and DELETE can be handled similarly in O(logn) time.

— Assuming that we know the element to be changed/deleted.

2.3 Heapsort
e Sorting using a heap, which we call Heapsort, takes O(nlogn) time.

— n-O(logn) time to insert all elements into the heap.

— n-0(logn) time to output the sorted elements by a sequence of DELETEMIN operations.

e Sometimes we would like to build a heap in O(n) time rather than in O(nlogn) time. For
example, we can get a constant-factor improvement in sorting if we come up with a very
efficient way of initially constructing the heap of n elements. The DELETEMIN operations
still take O(nlogn) time.



— Place elements in any order in a perfectly balanced tree.

— DowN-HEAPIFY all nodes level-by-level, bottom-up.

Correctness:

— Induction on height of tree: When doing level ¢, all trees rooted at level ¢ — 1 are heaps.
Analysis to show O(n) time for DOWN-HEAPIFY:

— Define leaves to be on level 1 (root on level logn).

— nelements = < [F]leaves == [g;]| elements on level h.
— Cost of DOWN-HEAPIFY on a node on level A is h.

Total cost: ©(Y 18" h - [2]1) =O(n Solog L.

— 28"k <2, and thus cost of DOWN-HEAPIFY is ©(n). Proof:
1

+ Assume |z| < 1 and differentiate Y 7° 2" = ;.

+ Derivative of LHS is > 7, hz" 1, and derivative of RHS is (w_11)2.

1/2
— Zi‘lohw’fﬁ g Z?ZOQ%ZWZZ-




