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Magnetic Disk Drives as Secondary Memory
- )
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[0 I/O Crisis! Disk access is 1,000,000 times slower!
[1 Time for rotation ~ Time for seek.

[J Amortize search time by transferring large blocks so that
Time for rotation ~ Time for seek ~ Time to transfer data.

[J Solution 1: Exploit locality and take advantage of block
transfer. Focus of this talk!

\ [J Solution 2: Parallel disks. (Not our focus today.)
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Parallel Disk Model
a8 N

[Aggarwal & Vitter 88], [Vitter & Shriver 90, 94, ...

= problem data size.
= size of internal memory.

= size of disk block.

Block [I/O = number of independent disks.

= number of CPUs.

N "D W =

= problem output size.

Mem

Notational convenience (in units of blocks):

N M7
Cry  n=dom=M-L
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A “Real” Machine
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(— Outline ~N

1. Fundamental I/O Bounds.
L] Merge sort.
[J Distribution sort.
[J Searching.
[J Lower Bounds.

2. Techniques for solving batched geometric problems.
[ Distribution sweeping.
[J Red-blue orthogonal rectangle intersection.
[J Water flow routing and accumulation in terrains.
[ Empirical results (via TPIE programming environment).

3. Online data structures.
[l B-trees, buffer trees, R-trees, etc.
[J Range searching.
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Fundamental 1/O Bounds (with D = 1 disk) —
[ Batched problems [AV88], [VS90], [VS94]:

N
e Scanning (touch problem): 6 (§> = O(n)

e Sorting:

Nlog % N N
= =0 (=1 Z) =6l
@(Blog% @(B OgM/BB) © (nlogy, n)

e Permuting: © (min {N, nlog,, n})
[ For other problems [CGGTVV95], [AKL95], ...

e (Graph problems x Permutation

e Computational Geometry =< Sorting
[1 Online problems:

e Searching and Querying: © (logg N + %) =0O(logg N + 2)
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1/O Lower Bound for Permuting

Permuting problem: Given N distinct items from {1,2,... , N },
rearrange the IV items into sorted order.

[ We will show the lower bound that permuting requires
Q(min{ N, nlog,, n}) I/Os.
L] Typically the min term is nlog,, n.

[] Permuting is a special case of sorting.

[0 I/O lower bound also applies to sorting. It is based only upon
routing considerations, since the order is already known.

(] For the pathological case when N < nlog,, n, we can show that
sorting requires 2(n log,, n) I/Os in comparison model.

[0 In the RAM model, permutation takes only O(N) time.
But in I/O model, it (and most interesting problems) require
sorting complexity (except for pathological case)!
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1/0O Lower Bound for Permuting

Goal: See how many I/O steps T are needed so that any of the N!
permutations of the N items can be realized.

We say that a permutation is realizable if it appears in extended

memory in the required order.

Internal Memory

Disk

_—
Memory positions. ©
1.23. .... M. M+1. M+2. M+3. ...

Tactic: Determine how much the ¢th I/O step can increase the

number of possible realizable permutations.

_J
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1/O Lower Bound for Permuting

Assumption: the N items to permute are indivisible.

# realizable permutations after ¢th I/0

( (M
(B) x (# realizable permutations after (¢ — 1)st I/O)

if block was previously accessed

M
B! x (B) X (# realizable permutations after (f — 1)st I/0O)

L if this is first access to block

There are N/B blocks initially unaccessed.

N
# choices for block accessed in tth I/O = (E + t) < N2,
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Number T of required 1/Os for Permuting
- / )

(BV/B ((g) N2) > NI

Taking logs and applying Stirling’s approximation:

N M
—logB!+ T | log + log N = QlogN!)
B B
N M
E(BlogB)—FT(BlogE—i-logN) = NlogN
M
T<Blog§+logN> = NlogN — NlogB
N
— Nlog >
g 7
. N log(N/B)
T = Q N, ————"——=
(m‘“{ ' B log(M/B)

= Q(min{N, nlog,, n})

\ ceram —/
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Merge Sort
2

Y
N

[J Form n/m initially sorted runs,

Repeatedly merge together 12 runs at a time

=  # passes = logp A log,,n—1
m

[0 Each pass uses ©(n) 1/Os
= #1/0Os=0(nlog,, n).
g

|:| Buffer run 1 -
M erged run Buffer run 2 -

on disk : :
|:| Buffer runR -
/\ Internal Memory
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Rruns
ondisk

N
N

each consisting of m blocks (i.e., one memoryload).

[ Reserve R = ©(m) buffers, each of size B, in internal memory.
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Distribution (Bucket) Sort
— (Bucket)

Y
N

the file evenly into buckets. (See [AV88, §5].)

[1 Independently sort the S subfiles recursively.

each level of recursion uses O(n) I/Os
# 1/0s = O(nlog,, n).

k:>

[ ] Buffersupfiler | ———=
File [ ] Buffersubfile2 | ———=

on disk > : .
[ ] Buffersupfiles | ———=
/\ Internal Memory

Jeff Vitter

Y
N

S subfiles
ondisk

N
N

[0 Select S = ©(m) or ©(y/m ) partitioning elements that divide

[J Stream the file through internal memory, forming S subfiles.

= number of levels of recursion is logg n = log,,, n.
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Batched Problems in Geometry
-

[GTVVI3], [AVVI5], [APRSV98a], [APRSV9I8b], [CFMMRIS]
Orthogonal rectangle intersection.
Red-blue line segment intersection.
General line segment intersection.
All nearest neighbors.
2-D and 3-D convex hulls.
Batched range queries.
Trapezoid decomposition
Batched planar point location.

O0Oooooogogooog

Triangulation.

We can improve this to O(nlog,, n+ z) I/Os using
[l Distribution sweep.

[] Batched filtering.

[l Random incremental construction.

kD Parallel simulation.
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Map Overlay/Spatial Join

Use of virtual memory = Q(Nlogg N+ Z)1/Os.  Bad !

~N

111

_J
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[] Basis for some geographic information systems (GIS).

[J Example: Find all farmland having a level of pollution over a
certain threshold.

\_
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Land Utilization

14-a
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Pollution level

14-b
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[] Red-blue line segment intersection important subproblem.
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Map Overlay/Spatial Join
—Map y/Sp

Land Utilization Pollution level

[l In database literature often solved in two steps:

e [ilter step: Compute minimal bounding rectangles for each
region and compute intersections between rectangles from
different maps (red-blue rectangle intersection).

e Refinement step: Validate intersections.

[1 We consider filter step: We focus on the case where input is
“unordered” (not indexed). Occurs e.g. when input is
intermediate result.

\ e —/
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Red-Blue Rectangle Intersection
- s

| [

—

[J Sweep plane while maintaining two active lists of red and blue

rectangles intersecting vertical sweep line [BW80]:
e When top of blue rectangle is reached:

(i) Insert blue rectangle in blue active list.

(ii) Find intersections with rectangles in red active list.
e When bottom of blue rectangle is reached:

(i) Remove rectangle from blue active list.

[J Red rectangles are handled similarly.

\_

_J
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— Red-Blue Rectangle Intersection

| i ]

_|_—|_: Iﬁ sweep line
l [T =

[0 Algorithm performs badly (> N I/Os)
if size of active lists > M.

\ o
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[J Solved in optimal O(nlog,, n + z) I/Os
using general method for solving Batched Dynamic Problems.

[l Sequence of operations aq,as,...,ayxy known beforehand.
(a; is Insert, Delete or Query.)

[J Key point: Updates and queries are batched!
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- Sketch of External Solution [APRSV98]: —————
: ‘ : ‘ | : !
§D

b

1. Divide plane into 1/m slabs, each with O(N/y/m ) endpoints.
2. Find Z’ intersections involving the part of a rectangle

o

completely spanning slabs.
3. Recursively solve problem in each slab.

[ O(log, /m n) = O(log,, n) levels of recursion.

/

Z
[ Performing Step 2 in O (n + E) I/0s
= O(nlog,, n+ z) I/Os total.
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— Key ldea
y | : | | | \

[ Use y/m slabs
0 == O(m) multislabs (continuous ranges of slabs)

[l = Can keep first B rectangles per multislab in internal

memory.

[] Perform top down sweep:
e Maintaining active list for each multislab.

\ o
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Sketch of Sweep
—

R e

[] Intersections between red centerpieces and tops of blue rects.:
e At red rectangle: Insert into relevant multislab list.
e At blue rectangle: Scan through all relevant multislab lists of
red rectangles.
(i) Report intersection with “non-expired” red rectangles.
(ii) Remove “expired” red rectangles (“lazy” deletion).

[J Other cases handled similarly—in one sweep!

\ e —/
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Higher Dimensions

[] Technique can be used recursively in dimension d > 2 by
decreasing number of slabs to m/2(¢=1)

[0 I/O performance using technique:

e d-dim. batched range searching:
O(nloghtn+1t) 1/0s, O(n) space.

e d-dim. rectangle intersection:
O(nlog? ' n+1t) I/Os, O(n) space.

e Batched semidynamic planar point location:
O((n + k)log2,(n+ k)) I/Os, O(n + k) space.
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TPIE, http://www.cs.duke.edu/TPIE/

" 0S8 often provides inadequate support for I/O and internal
memory management.

Jeﬂ Vltter Center for Geometric & Biological Computing

() Many problems can be solved using small number of paradigms.
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[J TPIE originally designed by former student Darren Vengroff:

e Make implementation easy (and portable). I/O-efficient (and

portable) programs.

e Framework oriented: Implements a number of high-level

paradigms on streams (C++)

—Scanning, merging, distribution, sorting, permuting, ...

e Access-Oriented: For index structures.

Jeff Vitter

(—TPIE's Distribution Access Method

\_
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TIGER/Line Data
— /

[1 TIGER/Line data from U.S. Census Bureau
(standard benchmark data for spatial databases)

‘ State H Category ‘ Size ‘ Objects ‘
Rhode Island (RI) Roads 4.3 MB 68,278
Hydrography 0.4 MB 7,013
Connecticut (CT) Roads 12.0 MB 188,643
Hydrography 1.8 MB 28,776
New Jersey (NJ) Roads 26.5 MB 414,443
Hydrography 3.2 MB 50,854
New York (NY) Roads 55.7 MB 870,413
Hydrography 10.0 MB 156,568
All Roads 98.5 MB 1541,777
Hydrography 15.4 MB 243,211

\_

_J
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Sun SparcStation 20 (Solaris 2.5) , 32MB memory (TPIE 12MB)

\_

Performance Comparison with PBSM [DP96
(— (Y [ ] _\

_J
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Data set: tall_rect
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— B-Trees [Bayer-McCreight72]
Level 2
Level 1
Leaves
B=6

[l Each node is stored in one disk block.

[0 Leaf nodes store all the data items.

B
O o) < node degree < B — 1, except for the root.

[ One I/O per level
= O(logg N + z) I/Os for a 1-D range query.

\_

(] Internal nodes store keys and pointers to guide the searching.

_J
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B-Trees—Updates in O(loggz IN) 1/0s
— (logg N) I/

nsertion may cause splits: \

=T
~ T heEh

Deletions may cause nodes to combine:

T bR A= bR
Del ae{de
5 T

\Sharing also possible (good packing). /

Jeff Vitter Conte for Geometic & Hological Computing, ) "7

Insert

Batched Dynamic Processing

Motivation: Sometimes we may want to handle inserts, deletes, and
queries in batches. In RAM algorithms, we can use an optimal
dynamic data structure and get optimal results.

But NOT in external memory!!!

Example: Sorting by inserting and deleting into a priority queue.
[l Insert items one at a time into priority queue.

[J Repeat: Find item in priority queue with minimum key. Delete
it from priority queue (delete_min operation) and output it.

[] N inserts into priority queue
== O(Nlogy N) I/0s. Bad !

(1 We want O(nlog,, n) I/Os. Good !!!

Another example: Sweep-line algorithm for finding rectangle
\intersections.
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The Buffer Tree [Arge95
(— [ g ]

buffers of ©( M) items — =
fan-out ©(m)
AN
O(logyy, n) \ \ ]
O |t g S

| dobdobdob dobdbbdbh dobdbbdbh dobdbbdbb

~N

Main idea: Combine degree-B nodes to form supernodes of
degree m = M /B. Each supernode gets a buffer of size M.

[J Insertions are done “lazily”: Items are inserted into buffers.
When a buffer runs full, its items are pushed one level down.

[ Buffer-emptying of M items takes O(m) I/Os
= O(m/M)=0(1/B) 1/Os per item per level

N
=> N items inserted in O (E log,,, n) = O(nlog,, n) I/0Os.

\ o
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Online Search

B-trees are an optimal data structure for the dictionary problem and

one-dimensional range queries:

0 O(logy N + z) I/Os per query.
[ O(log, N) I/Os per update.

[1 O(n) disk blocks of space.

We want similar performance for harder problems:

[J Proximity queries, nearest neighbor, clustering

[1 Point location, ray shooting

[0 Range searching in 2-D, 3-D, orthogonal, halfspace

Two very useful paradigms:
1. Filtering [Chazelle86]: You can afford to do an extra I/O during
search if you can charge it to ©(/3) query outputs.
2. Bootstrapping [AV96, ASV99]
[0 Use an external version of an efficient internal-memory data
structure as the global search structure.
[ Within the structure, use efficient static data structures on smaller
\ instances (of size ()(/3”)) of the problem. _)
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Online Range Searching

Applications: geographic information systems (GIS), spatial databases,
indexing for new data models (constraint, temporal, object-oriented).

. . . . . . .
. . . .
ol o * o . * o . e o .
. . . . . . .
. . . .
o . . .
. L] * . L] * .
. . .
° . . . . . . . . .
diagonal corner query 2-sided query 3-sided query 4-sided query

For example, indexing constraints in constraint query languages:

|

*) Xy

@
”

(@
—

|

diagonal corner query stabbing query with q

\ e
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Internal Interval Tree (fixed endpoint set
2 ( ) —

\ e —/
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[J An interval X, is associated with each node v.

[] A segment is stored in the highest node v where it contains the
midpoint of X,,.

[] Segments in node v are stored in two secondary search trees,
sorted according to left and right endpoint, respectively
== and bounds.

Jeff Vitter 32-a

—

q
[J Query with ¢ on left side of midpoint of X o04:

e Search from left-to-right in secondary search tree sorted
according to left endpoint.
e Recurse in left son = bound.
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U Number of stabbed segments in a secondary structure may be
small (or zero).
e We can be forced to use an I/O in each of O(log, V) nodes
without reporting anything.

Jeff Vitter 32-¢

(— External Interval Tree ~N

0 Decrease fan-out to v/B. Height remains O(logg N).

0 VB “slabs” define O(VB') = O(B) “multislabs”.

[ Secondary list structure (B-tree) for each of the 2-+/B slabs
and O(B) multislabs.
[J Interval stored in two slab lists and (maybe) one multislab list

= O(n) space and O(logg N) I/0s per update.

\ e —/
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(— External Interval Tree ~

[J Need weight-balanced B-trees to remove fixed-endpoint
assumption. Rebalancing node v requires O (weight(v)) I/Os.

\ o
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— Query in External Interval Tree

YOV OVIV IOV ST

Search for q

[0 Search down the structure and in every of the O(log, V') nodes:
e “Search” in two slab lists: 2-O(z+ 1) I/Os.
e Report all segments in relevant multislab lists

\ gog —
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— O(z+B) I!!

Jeff Vitter 35-a

—The segments for any multislab containing less than B/2
segments are collectively stored in the node’s “corner structure”
(of total size O(B?)). We avoid looking at those multislabs by
instead querying the corner structure —

= Optimal query bound of 1/0s.
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Corner Structure of O(B?) points
— (B%) p

Corner Structure: A set of k < B? segments can be represented
using O(k/B) blocks such that a stabbing query can be answered
in O(z + 1) I/Os [KRVV93].

[] The corner structure can be made dynamic with O(1)
amortized update bound: Keep a special update block and

rebuild the structure after B updates have been performed
[KRVV93].

[J Amortization can be removed by rebuilding the corner
structure lazily.

\_
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— External Range Searching Results

O Corner (Interval tree): O(n) space, O(logg N + z) I/Os query,
O 2-sided and 3-sided: O(n) space, O(logg N + z) I/Os query,

0 J-sided: O(n(logn)/logloggz N) space, O(logg N + z) 1/Os query,
O((logy N)(logn)/loglogy N) I/Os update [ASV99).

[0 Lower bounds: Cannot simultaneously achieve

0 Three-dimensional range queries: O (n(logn)*** /(log(logz N))¥)
space for (3 + k)-sided 3-D queries, O(logg N + z) I/Os query
[VV96, Vit99].

Static: optimal !
[0 Open problems: Higher dimensions, typical-case analysis, restricted
sets of queries, non-orthogonal searching, point location, etc.

Jeff Vitter Center for Geometric & Biological Computing

O(logg N) I/Os update [AV96]. Optimal !

O(logg N) I/Os update [ASV99]. Optimal !

Optimal, except update!

O(n(logn)/loglogg N) space & O((logg n)° + z) 1/Os query [SR95].

0 Halfspace queries: O(n) space, O(logg n + z) 1/Os query [AAEFV99].

\ gog

~
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Conclusions and Open Problems

~N

O Répertoire of useful paradigms (distribution, merging,
distribution sweeping, persistence, parallel simulation, B-trees,
external interval tree, external priority search tree) for
important problems.

e Worst-case optimality requires overhead.

e Simpler versions are practical!

e Building blocks for external data structures
(e.g., interval tree allows brute force rebuilding)

O Lots of open problems in the design and analysis of external

memory algorithms and data structures!

e Lower bounds without indivisibility assumption.

e New models: hierarchical memory, caching, MEMS, optical

storage, ... .

e TPIE, see http://www.cs.duke.edu/TPIE/ partitioning

. elements, large fanouts. (Don’t use square root trick.) _/
aae
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Conclusions and Open Problems
2

e Fundamental graph problems
(e.g. topological sorting, BFS, DFS, connectivity).

e Online dynamic data structures
(e.g. dynamic point location, range search in higher
dimensions, clustering, similarity search).

e GIS applications (e.g. practical red-blue line segment
intersection, spatial join, terrain processing).

e String processing, molecular databases.

e Typical-case behavior of popular data structures
(e.g., R-trees).

\ e —/
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