Topic 6: Sorting Lower Bound and Radix Sort
(CLRS 8.0-8.3)

CPS 230, Fall 2001

1 Comparison model sorting lower bound

e We have seen two sorting O(nlogn) algorithms: Merge sort and quicksort (using median
selection)

e These algorithms only use comparisons to gain information about the input.
e We will prove that such algorithms have to do Q(nlogn) comparisons

e To prove bound, we need formal model

Decision tree
— Binary tree where each internal node is labeled a; < a; (a; is the ith input element).
— Execution corresponds to root-leaf path.

* at each internal node, the corresponding comparison a; < a; is performed.
x If the comparison is true, the left branch is taken; otherwise the right branch is taken.

— Leaf contains result of computation.

e Example: Decision tree for sorting 3 elements.

— a leaf contains the permutation giving the final sorted order.

— For example, the leaf (1,3,2) means that a1 < ag < as.

e Note: Decision tree model corresponds to algorithms where

— Only comparisons can be used to gain knowledge about input

— Data movement, control, etc, are ignored

e The worst-case number of comparisons performed corresponds to the height of the decision
tree (i.e., the longest root-to-leaf path).

e Therefore, a lower bound on height = lower bound on sorting

Theorem: Any decision tree sorting n elements has height Q(nlogn). ‘

Proof:

— Assume elements are the (distinct) numbers 1 through n
— There must be n! leaves (one for each of the n! permutations of n elements)
— Tree of height h has at most 2" leaves

" >nl—=h > logn!
= log(n(n—1)(n —2)---(2))
= logn+log(n—1)+log(n—2)+---+1log2
n
= Zlogi
=2
n/2—1 n

= Z logi + log %
i=2 i=n/2

2 Beating sorting lower bound (bucket sort)

e While proving the ©(n logn) comparison lower bound we assumed that the input were integers
1 through n

e We can easily sort integers 1 through n in O(n) time.

— just move element ¢ to position ¢ in output array

(4] 7]ef2]s]afwfo[1]s]

(1f2]sfafs]ef7]e]o]m]

e What about the more general problem of sorting n elements in range 1.. k7

— Move element 3 to linked list of element
— Produce sorted output

LT L] noneatomens

Algorithm uses O(n + k) time and space

Note:

— We did not use comparison at all!

— We beat the Q(nlogn) bound by using values of elements to index into array—Indirect
addressing

e Note:

— Algorithm is stable (i.e., the order of equal elements is maintained)

— Algorithm is not in-place (since asymptotically more than ~ n space is used) or even
linear-space (since more than O(n) space is used). All other sorting algorithms we have
seen have been linear-space, and quicksort was in-place.

e Note:

— Book calls a simplified version of this algorithm counting sort. That algorithm just counts
how many keys have each possible value. It therefore can’t handle sorting records that
have both keys and auxiliary information.

— The book uses the term bucket sort for the algorithm where each bucket corresponds to
a contiguous range of values, not a single value. Each bucket is then sorted using an
algorithm like insertion sort.

— For simplicity, we call all these algorithms, including the one we cover above, bucket sort.

3 Radix sort

e Problem with bucket sort is that the amount k£ of auxiliary space can be very large
— Example: 32 bit integers = k = 232 &~ 10 = space used is 10° - 4 bytes ~ 4Gbytes!

e Large k results in a running time not proportional to n (as well as other problems like disk
swapping)

3.1 MSD radix sort

e MSD radix sort regards numbers as being made up of digits

— Bucket sort by most significant digit (MSD)

— Recursively sort buckets with more than one element (according to next digit)
e Correctness is straightforward (by induction)

e Example: Sorting numbers < 1000 (k = 1000) using 10 buckets

329
32¢
329

QRONTHRWNEO

457 436

3: 329,355 .

657 54
4: 457,436
839 > \
0: 657
436 5: 1
2 72C
720 6: 657 3 436
4: 83¢
355 71720 5. 457
6:
8: 839 7
8:
9: 9

Problem with MSD radix sort

— We need to keep track of a lot of recursion (buckets)

— Many buckets = space use

Advantages of MSD radix sort

— We ounly need to look at distinguishing prefiz (what we need to look at)

LSD radix sort
LSD radix sort:

— Sort by least significant digit (LSD)

— Sort by second least significant digit (using a stable sorting algorithm)

— Sort by most significant digit (using a stable sorting algorithm)

Correctness again by induction

Example:

329 0: 720 720 0: 720 0: 329
1: 1: 1:

457 2: 355 2: 720,329 329 2: 355

657 3: 436 3: 436,839 436 3: 329,355 436

gz —> 4 _ sy — A > |gg| 7 A MBAST = |
5: 355 5: 355,457,657 5:

436 6: 436 657 6: 355 6: 657 657

720 7. 457,657 329 7: 457 7: 720 720
8: 8: 8: 839

355 839 657 839

e 9: 329,839 e 9: haad 9: i

e Problems with LSD radix sort:

— We look at all the numbers in all phases

— Not generally linear-space (since n might be much smaller than the number of buckets)

3.3 Linear-space radix sort

e To get a linear-space radix sort algorithm (but not in-place, which means o(n) extra space),
we simply choose the number of buckets to be O(n).

— In example, we had n = 7 and the number of buckets was 10. We divided the key range
into 10 intervals.

e Let’s choose the number of buckets to be n so that we use linear space. If numbers are < R,

the number of phases i is such that n' > R =i = [llgéff]

— In example, we had R = 839, 10® > 839 = 3 phases

= O(n) space and O(n - 1%8£) time

logn

log R
logn

e Note: When is linear-space radix sort using time n[| better than a sort using time equal

to 1-nlogn (for 32 bit integers)?

32
logn

—n-[2=] <nlogn = n>064

e Note: Recent algorithm by Andersson and Nilsson (1997) combines advantages of MSD and
LSD radix sort

— Linear-space

— Only looks at distinguishing prefixes

