2 Introduction

e Class is about designing and analyzing algorithms

— Algorithm: A well-defined procedure that transfers an input to an output.

* Not a program (but often specified like it): An algorithm can often be implemented
in several ways.

— Design: We will study methods/ideas/tricks for developing (fast!) algorithms.

— Analysis: Abstract/mathematical comparison of algorithms (without actually imple-
menting them).

e Math is needed in three ways:

— Formal specification of problem
— Analysis of correctness

— Analysis of efficiency (time, memory use,...)

e Hopefully the class will show that algorithms matter!

3 Algorithm example: Insertion-sort

3.1 Specification
e Input: n integers in array A[l..n]

e Output: A sorted in increasing order

3.2 Insertion-sort algorithm

FOR j =2 ton DO
key = A[j]
i=j—1
WHILE ¢ > 0 and A[i] > key DO
Ali + 1] = A[f]
1=1—1
oD
Afi + 1] = key
oD

e NOTE: Algorithm shows example of the (Pascal like) pseudo-code we will sometimes used to
describe algorithms.

Example:

1 3 j=2 i=1 key=2

4 i=0
| 4
j=3 =2 key=4
6 i=1
| 6
1 3 =4 i=3 key=6
4 |1
2 45 6 1 3 =5 i=4 key=1
2 4 5 6 6 3 i=3
2 4 5 5 6 3 i=2
2 4 4 5 6 3 i=1
2 2 4 5 6 3 i=0
1 2 4 5 6|3
1 2 4 5 6 3 j=6 i=5 key=3
1 2 4 5 6 6 i=
1 2 4 55 6 i=3
1 2 4 4 5 6 i=2
1 2 3 4 5 6

3.3 Correctness
e Induction:
— The Invariant “A[1..j-1] is sorted” holds at the beginning of each iteration of FOR-loop.

— When j=n+1 we have correct output.

3.4 Analysis

e We want to predict the resource use of the algorithm.
e We can be interested in different resources
— but normally running time.

e To analyze running time we need mathematical model of a computer:

Random-access machine (RAM) model:
— Memory consists of infinite array
— Instructions executed sequentially one at a time
— All instructions take unit time:

* Load/Store
* Arithmetics (e.g. +,—,%*,/)
* Logic (e.g. >)

Running time of an algorithm is the number of RAM instructions it executes.
RAM model not completely realistic, e.g.

— memory not infinite (even though we often imagine it is when we program)

not all memory accesses take same time (cache, main memory, disk)

not all arithmetic operations take same time (e.g. multiplications expensive)

instruction pipelining

— other processes

But RAM model often enough to give relatively realistic results (if we don’t cheat too much).

Running time of insertion-sort depends on many things

— How sorted the input is
— How big the input it

Normally we are interested in running time as a function of input size
— in insertion-sort: n.
We don’t really want to count every RAM instruction

— Let us analyze insertion-sort by assuming that line 4 in the program use ¢; RAM instruc-
tions.

— How many times are each line of the program executed?
* Let t; be the number of times line 4 (the WHILE statement) is executed in the j’th

iteration.
cost times
FOR j =2 ton DO cl n
key = A[j]) n—1
1=7—1 c3 n—1
WHILE i > 0 and A[i] > key DO c4 ieot;
Ali + 1) = Ald] cs iea(t; —1)
1=1—1 Cg ?:2(75]'—1)
OD
Ali + 1] = key cr n—1
OD

e Running time: (depends on t;)

T(’I’L) =cCcin +02(n - 1) + 03(77, - 1) +cq 27:2 tj +c5 Z;'Z:Q(tj - 1) + ¢ E?:Q(tj - 1) + C7(’I’L - 1)

— Best case: t; = 1 (already sorted)

Tn) = cn+cn—1)+c(n—1)+c(n—1)+cr(n—1)
(Cl+02+C3+C4+C7)n—(CQ+C3+C4+C7)
= kln—kz

Linear function of n

— Worst case: t; = j (sorted in decreasing order)

T(n) = cante(n—1)+c(n—1)+tecdj o +esdjo(i—1)+cerjo(i—1)+cr(n—1)
_ n(n+1) (n—=1)n (n—1)n
= can+c(n—1)+c(n—1) +au(75— —-1) +e(F57) +(5—) +cr(n—1)
= (ca/2+¢5/2+c6/2)n* + (c1 + o+ 3+ ca/2 —cs5/2 —c6/2+ cr)n — (ca + c3+ ca + ¢7)

= k3n2 + kan — ks

Quadratic function of n

Note: We used |37 j = % (Next week!)

— “Average case”: Be careful! (average over what?)

We assume n numbers chosen randomly = ¢; = j/2
T(n) = k6n2 + k‘77’L + kg

Still Quadratic function of n

e Note:

— We will normally be interested in worst-case running time.

* Upper bound on running time for any input.
* For some algorithms, worst-case occur fairly often.
* Average case often as bad as worst case (but not always!).
— We will only consider order of growth of running time:
*x We already ignored cost of each statement and used the constants c;.
* We even ignored ¢; and used k;.

* We just said that best case was linear in n and worst/average case quadratic in n.

= O-notation (best case O(n), worst/average case O(n?)) (next lecture!)

4 Designing Good Algorithms: Divide and Conquer/Mergesort

4.1 Divide-and-conquer

e Can we design better than O(n?) sorting algorithm?

e We will do so using one of the most powerful algorithm design techniques.

Divide and Conquer

To Solve P:
1. Divide P into smaller problems Py, P, Ps..... Py.
2. Conguer by solving the (smaller) subproblems recursively.

3. Combine solutions to P, Py, ...P; into solution for P.

4.2 Merge-Sort
e Using divide-and-conquer, we can obtain a merge-sort algorithm.
— Divide: Divide n elements into two subsequences of 1n/2 elements each.

— Conquer: Sort the two subsequences recursively.

— Combine: Merge the two sorted subsequences.

e Assume we have procedure Merge(A, p, ¢,) which merges sorted A[p..q] with sorted A[q+1....

in O(r — p) time.

e We can sort A[p...r] as follows (initially p=1 and r=n):

Merge Sort(A,p,r)

If p < r then
q=p+7)/2]
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)

Example:

5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6
5 2 4 6 1 3 2 6
5 2 4 6 1 3 2 6

1 2 2 3 4 5 6 6

2 4 5 6 1 2 3 6
2 5 4 6 1 3 2 6
5 2 4 6 1 3 2 6

4.3 Correctness

e Induction on n

— Easy assuming Merge() is correct!

4.4 Analysis

e To simplify things, let us assume that n is a power of 2, i.e n = 2* for some k.
e Running time of the procedure can be analyzed using a recurrence equation/relation.

T(n) c1+T(n/2)+T(n/2) + can

<

< 2T(n/2) + csn
4

T(n) = O(nlogyn) as we will see later.

e We can also get O(nlog,n) bound by noticing that the recursion tree has depth log, n and
that O(n) time is spent on each level.

e Note:

— We really have T'(n) = ¢4 if n =1

— If n # 2* things can be complicated (We will often assume n = 2* to avoid complicated
cases).

4.5 Log’s

e Base 2 logarithm comes up all the time (from now on we will always mean log, n when we
write logn).
— Number of times we can divide n by 2 to get to 1 or less.
— Number of bits in binary representation of n.
— Inverse function of 2" =2-2-2---2 (n times).

— Way of doing multiplication by addition: log(ab) = log(a) + log(b)

o Note:

_ logyn
~ logya

—logn << y/n<<n

— log, n

