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1 Introduction

Up until now we’ve looked primarily at batched problems, in which no preprocessing is done
and the entire input file must be processed. Sorting is a classic example of a batched problem.
Others we’ve seen include selection, finding the median, and matrix multiplication.

In this lecture, we start to discuss data structures for online problems, in which computation
is done in response to a continuous series of query operations. In particular, we’ll start with
data structures for maintaining ordered sets (or dictionaries).

A common technique for online problems is to organize the data items via a hierarchical
index, so that only a very small portion of the data needs to be examined in response to each

query.

The data being queried can be either static, which can be preprocessed for efficient query
processing, or dynamic, where the queries are intermixed with updates such as insertions and
deletions.

Dynamic data structures play an important role in algorithms design.

2 Maintaining an ordered set dynamically

2.1

e We want to maintain an ordered set S under the following dynamic operations:

SEARCH(e): Return (pointer to) element e in S (if e € S)
— INSERT(e): Insert element e in S
— DELETE(e): Delete element e from S

SUCCESSOR(e): Return (pointer to) minimal element in S larger than e

PREDECESSOR(e): Return (pointer to) maximal element in S smaller than e

Models of computation

o Just as we saw with sorting, we can get different results depending upon whether we use a

pointer machine model, in which case we operate using comparisons and linked structures,
or if we use a more general RAM model that permits arithmetic operations and indirect
addressing. The power of the RAM model allowed us to get linear-time sorting algorithms in
certain situations.

To get realistic models, we add some restrictions to the RAM model. One restriction is
to allow computations on arbitrary-sized integers, but to charge O(log#) as the cost of an
operation involving integers of £ bits.



e A more common model is to instead use words of logn bits, and to allow constant-time
arithmetic operations on words. The motivation is that pointers must be O(logn) bits, and
it’s reasonable to allow pointer manipulation in constant time.

2.2 Ordered array implementation

e The first implementation that comes to mind is the ordered (i.e., sorted) array:

‘1‘3‘5‘ 6‘ 7‘ 8‘ 9‘11‘12‘15‘17‘

— SEARCH can be performed in O(n) time by scanning through array or in O(logn) time
using binary search

— PREDECESSOR/SUCCESSOR can be performed in O(logn) time like searching

— INSERT/DELETE takes O(n) time since we need to expand/compress the array after
finding the position of e

2.3 Double linked list implementation

e Unordered list
[elitle [t s [t [ et Rt [ et e [t [ et [ ]

SEARCH takes O(n) time since we have to scan the list

PREDECESSOR/SUCCESSOR takes O(n) time

INSERT takes O(1) time since we can just insert e at beginning of list

— DELETE takes O(n) time since we have to perform a search before spending O(1) time
on deletion

e Ordered list

ettt [t el [t el ]y ]

— SEARCH takes O(n) time since we cannot perform binary search
— PREDECESSOR/SUCCESSOR takes O(n) time

— INSERT/DELETE takes O(n) time since we have to perform a search to locate the position
of insertion/deletion

3 Binary Search Trees

A binary search tree T is defined recursively: T consists of a node containing a single element z € S
and two (possibly empty) subtrees T; and 7,. The node containing z is called the root of T and T;
(T)) the left (right) subtree. The root of the left (right) subtree is called the left (right) child of z.
If a subtree is empty, we say that it consists of an external node or leaf.

The elements in the tree satisfy the search tree property: All elements in 7} are smaller than
z and all elements in T;. are larger than x—refer to Figure 1. A binary search tree on a set S of
size n uses O(n) space.

Searching for an element e in a search tree is done using a simple recursive procedure: e is
compared to the element stored in the root of the tree. If e is smaller, the search is recursively
continued in the left subtree and otherwise the search is continued in the right subtree. As O(1)



Figure 1: The search tree property (left) and an example of a binary search tree (right). The leaves
(i.e., external nodes) are not pictured. A node with k children (for 0 < k£ < 2) has 2 — k leaf nodes
immediately below it. For example, since node 1 has no children, we say that there are two leaves
immediately below node 1. Since node 3 has one child (namely, node 1), we say that there is one
leaf immediately below node 3. Leaves can be reprsented by nil pointers.

Figure 2: Inserting a node.

root —»
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Delete(T, 1)

Figure 4: Deleting a node with two children.



time is spent in each node the total time used is O(h), where h is the height of the tree. The
successor or predecessor of e can be found in a similar way.

Insertion of an element e consists of searching for e and creating a new node at the leaf where
the search path terminates—refer to Figure 2. Thus an insertion takes O(h) time.

Deleting e is a little more involved. First a search is made for the node v holding e. If v has
no children, it can simply be deleted. If v has one child, v is deleted and its single child is attached
to v’s parent—refer to Figure 3. In the case where v has two children, the successor of e is first
found. This corresponds to finding the minimum element in the right subtree of v. (The node w
containing the successor can be found simply by following left branches as long as possible, starting
in the right subtree of v.) Then the element in w is copied into v (the binary search tree property
is preserved) and w is deleted. As w can have at most one child it can be deleted as discussed
above—refer to Figure 4. Deletion takes O(h) time.

All operations on a binary search tree take O(h) time; h can be anywhere between logn (bal-
anced tree) and n (unbalanced tree). In the following we discuss how to keep the tree (relatively)
balanced during updates, so that all operations take O(logn) time.

4 Red-Black Trees

A Red-Black tree is a binary search tree where each node is colored either BLACK or RED. The
colors are used to keep the tree balanced during update operations such that the height of the tree
is O(logn). The following invariant must be satisfied at all times.

Red-Black Tree Color Invariant
1. The root is colored BLACK.
2. A RED node can only have BLACK children.
3. Every path from the root to a leaf contains the same number of BLACK nodes.

Here, “leaf” means an external node, as defined previously. That is, we can imagine any node with
no children as having two leaf nodes below it, and any node with exactly one child has one leaf
node below it, as explained in Figure 1.

Lemma 1 A red-black tree with n nodes has height ©(logn).

Proof. All root-leaf paths must have the same number of BLACK nodes but we can have a RED
node between every pair of BLACK nodes. This means that Amax < 2hmin, where hpmax and hpin are
the lengths of the longest and the shortest root-leaf path in the tree, respectively. Then, using the
fact that a complete binary tree with height h (i.e., root-to-leaf path length h) has 2" — 1 nodes,
we have

2hmin — ] <p < 2Mmex — 1 = hin < log(n + 1) < hmax < 2hmin
0,

h
1
= §log(n+ 1) < hpin < log(n + 1)

Since hmin < hmax < 2hmin, it is also true that Amayx < 2log(n +1). B

4.1 Insertion into Red-Black Trees

An insertion into a red-black tree is initially the same as an insertion into a binary search tree; the
new element is inserted in a leaf at the appropriate place in the tree (thus creating two new leaf
nodes immediately below it). The question is what color we should give to the new node. If it has
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a RED parent we cannot color it RED because of the second part of the invariant. We cannot color
it BLACK either, as the paths from the root to the leaves below it then get one more BLACK node
than other root-leaf paths, violating the invariant. The new node is what we call “problematic”.

It turns out that we can always either resolve the problem with some local rearrangement and
recoloring of nodes, or push the problem up in the tree (two levels at a time). In the worst case
it will be pushed all the way to the root, where it can be trivially handled. Thus the insertion
procedure takes O(logn) time.

To present the recoloring and rebalancing process, we imagine coloring the problematic node
GREEN to indicate that it is yet to be colored. During the process, we will maintain the insertion
invariant that the problematic node has only BLACK children (if any). This is true just after the
insertion as the new node has no children. We now have the following cases (the symbols we use
are summarized in Figure 5):

1. Parent does not exist (problematic node is the root)

We color the problematic node X BLACK, as illustrated in Figure 6. The invariant is main-
tained as all root-leaf paths get one more BLACK node.

2. Parent is BLACK

This case, illustrated in Figure 7, is also simple. We can safely color the problematic node X
RED as it is not the root and as the subtrees T1 and T2 have BLACK roots.

3. Parent is RED

This case is more involved and we have to distinguish between several cases depending on
the color of X’s uncle C. Note that X’s parent B cannot be the root of the tree (since B is
RED), and therefore X has a grandparent (call it A).

(a) Uncle exists and is RED
We recolor the nodes as illustrated in Figure 8 (we only show one of several symmetric
cases). We color X RED. To do so, we have to make sure that its parent is BLACK.
We make it BLACK by “pushing” the BLACK node from A one level down, “splitting”
it into two. After the rearrangement the problematic node has moved two levels up the
tree to A. Note that we maintain the insertion invariant as the problematic node has
BLACK children.
The red-black color invariant is maintained as X has BLACK children (so RED is a
valid color for it), and the number of BLACK nodes on each path from A to T remains
unchanged (=1).

(b) Uncle is BLACK or nonezisting
We restructure and recolor the tree as shown in Figures 9 and 10 (again symmetric cases
are not shown).
The binary search tree property is maintained as the order of the elements in the tree
is the same before and after the transformation (7'1,X,72,B,T3,A,T4,C,T5 in the
first case and T'1, B, T2, X, T3, A, T4,C,T5 in the second case). The red-black invariant
is fulfilled after the transformation/recoloring: The RED nodes can only have BLACK

QO = BLack nope () = RED NODE [ | = GREEN (PROBLEMATIC) NODE

Ti = A subtree Ti = A subtree with ablack root

Figure 5: Symbols used in the figures.
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Figure 6: The problematic node is the root (case 1).
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Figure 7: The parent of the problematic node is BLACK (case 2).
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Figure 8: The parent and the uncle are both RED (case 3 a)).
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Figure 9: The parent is RED and the uncle is BLACK (case 3 b) 1).

Figure 10: The parent is RED and the uncle is BLACK (case 3 b) 2).



children (because the subtrees T1, T2 and T3 have BLACK roots), and the number of
BLACK nodes on paths to subtrees T1, T2, T3, T4, and T5 is the same before and after
the transformation.

Remarks:

As discussed, every transformation either resolves the problem or propagates it up in the tree
(Figure 8). As each transformation involves a constant number of pointer and color changes they
can all be performed in O(1) time. Thus an insertion takes O(logn) time.

Even though the restructurings in Figures 9 and 10 seem complicated they are actually obtained
using one fundamental operation: a rotation. A rotation is a local restructuring operation that
modifies the tree locally while maintaining the search tree property. Figure 11 a) illustrates a (right)
rotation. The transformation on Figure 9 corresponds to such a rotation. The transformation on
Figure 10 can be obtained using two rotations, or a double rotation as illustrated in Figure 11 b).

| | |
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! T2 T3
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Figure 11: a) Single rotation. b) Double rotation.

4.2 Deletion from Red-Black Trees

Like an insertion, a deletion from a red-black tree initially proceeds as a deletion in a normal binary
search tree, as described in Section 3. When the only remaining step is the deletion of a node X
with no left child, we need to make sure that the red-black tree coloring invariant is maintained. If
X is RED, it must have no children at all. (If X had a right child, the right child couldn’t also be
RED and therefore would have to be BLACK, but then the root-to-leaf path to the leaf to X’s left
would have one less black node than the path that goes through X'’s right child, which violates the
invariants.) Therefore, we can simply remove X. Similarly, if X is BLACK and its single child is
RED, we can safely remove X and color the child BLACK.

So we are left with the (problematic) case where X is BLACK with no children. There’s no easy
fix. We’ll handle the situation by a case-by-case analysis, as for insertion. We’ll see below that we
can always resolve the problem either by some local rearrangements and recolorings, or by pushing
the problematic BLACK node up in the tree (two levels at a time).

As previously, we depict the problematic node X as a square, but unlike in the insertion case,
X’s color is already determined (namely, X is BLACK). We also maintain the deletion invariant
that the problematic BLACK node X has a BLACK son (if any at all). (Initially, X has no children,
but during the course of pushing X up the tree, it may have one child, but the child will always be
BLACK.)

1. Parent does not exist (the problematic node is the root)

We remove X as illustrated in Figure 12. The invariant is maintained: The new root is
BLACK, and all root-leaf paths have one less BLACK node than before the transformation.

2. Parent is RED



Since the parent of X is RED, X must have a sibling. (Otherwise, X’s parent is immediately
above a leaf L (external node), and a root-leaf path through X would have at least one more
BLACK node than the root-leaf path to L.) Moreover, the sibling has to be BLACK, since the
parent is RED. There are two cases, depending on the color of the nephew of X.

(a) Nephew is BLACK (or nonexisting)
The problematic node is removed as illustrated in Figure 13. The transformation main-
tains the invariants: The rotation maintains the search tree property and the number of
BLACK nodes on all root-leaf paths stays the same.

(b) Nephew is RED
The problematic node is removed with a double rotation as illustrated in Figure 14. The
invariant is again maintained: The search tree property is maintained, C' cannot be the
root—since A is not the root—so the color of the root is not affected, and the number
of BLACK nodes on all root-leaf paths stays the same.

3. Parent is BLACK

As in the previous case, X must have a sibling, call it B. However, unlike previously, X’s
sibling B can be of any color:

(a) Sibling is RED
Since the sibling B is RED, it must have two children, or else there is a root-leaf path
with fewer BLACK nodes than a root-leaf path through X. Since B is RED, it also follows
that B’s children are BLACK.
We resolve the problematic situation as illustrated in Figure 15. We perform a single
rotation that, interestingly, moves the problematic node down! Luckily, the resulting
situation is one where the parent of the problematic node is RED and the sibling and
nephew are each BLACK. This situation can be fully resolved locally as described in
case 2(a) above. As before, it is easy to see that the invariant is maintained by the
transformation.

(b) Sibling is BLACK
There are several cases, depending on the coloring of the nephews of X.

i. Both Nephews are BLACK (or nonezxisting)
We push the problem up the tree as illustrated in Figure 16. In the new configuration
the problematic node has a BLACK son as required. The invariant is also maintained
since the recoloring of B means that the number of BLACK nodes on all root-leaf
paths is maintained.

ii. One or both Nephews are RED
Depending on which of the nephews is RED we resolve the problem using either a
single or a double rotation as illustrated in Figure 17 (if both nephews are RED
any of the two can be used). As previously, it is easy to check that the invariant is
maintained after the transformations.

Remark: An important feature of the red-black tree is that an update results at most three node
rotations. The number of recolorings, however, can be up to O(logn).



Figure 12: The problematic node is the root.
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Figure 13: The parent is RED (sibling is BLACK) and nephew is BLACK.
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Figure 14: The parent is RED (sibling is BLACK) and nephew is RED.

5 Correspondence between Red-Black Trees and 2-3-4 Trees

There is a natural correspondence between red-black trees and 2-3-4 trees, which are multiway
balanced trees in which the nodes having no children are all on the same level, and each internal
node has between two and four children.

Here’s how we can convert a 2-3-4 tree into a red-black tree: For each node in a 2-3-4 tree,
starting from the root, make it a a BLACK node in a red-black tree. If the 2-3-4 node has two
children, its two children are BLACK. If it has three children, we replace it by a node with two
children: one BLACK child and the other child is a RED node that has two BLACK children of its
own. The three new BLACK nodes represent the original three children. Similarly, if the 2-3-4 node
has four children, we replace it by a BLACK node with two RED children that each have two BLACK
children. The four new BLACK nodes represent the original four children.

On any path in the 2-3-4 tree starting at the root, each level adds one BLACK node to the
corresponding red-black tree. Since childless nodes in the 2-3-4 tree are all on the same level, the
number of BLACK nodes on any root-to-leaf path in the red-black tree must be the same. By
construction, each RED node has BLACK children, so the invariants of red-black trees are satisfied.

The correspondence goes both ways, so that any red-black tree can be transformed into a
corresponding 2-3-4 tree. 2-3-4 trees operate by splitting and merging nodes along a root-to-leaf
path when the degrees get too large or small. The balancing operations that we studied in this
lecture note are the corresponding operations on the corresponding red-black tree.
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Figure 15: The parent is BLACK and the sibling is RED.
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Figure 16: The parent is BLACK, the sibling is BLACK, and both nephews are BLACK or nonexisting.
Note that the actual key value represented by X may need to be modified to maintain the search
tree property, but since X is going to be deleted anyway, it doesn’t matter.
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Figure 17: The parent is BLACK, the sibling is BLACK, and a nephew is RED.
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