Topic 2: Recurrences and Strassen’s Algorithm
(CLRS 4.0—4.4, 28.1-28.2)

CPS 230, Fall 2001

1 Recurrences

e As we saw previously with divide-and-conquer algorithms, the analysis of recursive algorithms
leads to recurrence relations.

e Merge sort leads to the recurrence T'(n) = 27'(n/2) + O(n)

0(1) Ifn=1

T([51)+T(5]) +6(n) Ifn>1

— but we will often cheat and just solve the simple formula (equivalent to assuming that
n = 2% for some constant ).

— or rather, T'(n) = {

1.1 Substitution method

e Idea: Make good guess and prove by induction.
e Let’s solve T'(n) = 2T'(n/2) +n, T(1) = 1 using substitution

— Guess T'(n) < enlogn for some constant ¢, for n > 2 (that is, 7'(n) = O(nlogn))
— Proof:

* Basis: Function constant for small constant n (e.g., T(2) =4 < cnlogn if ¢ > 2.
* Induction:

Assume holds for n/2: T'(n/2) < c§log g

Show holds for n: T'(n) < cnlogn

Proof:

T(n) 2T (n/2) +n

n n
2| czlog -
<02 0g2>+n

log n +
cn - n
2

IA

cnlogn —cnlog2 +n

= cnlogn—cn+n

So all is fine if ¢ > 1, since the right-hand side will be at most c¢n logn.
e T(n) = Q(nlogn) can be proved similarly.

e How do we make a good guess?



— Something of an art!

— Try different bounds (e.g. Q(n) easy, show O(n?) = guess O(nlogn))

e Note: changing variables can sometimes help

— Example: Solve T'(n) = 2T'(\/n) + logn

Let m =logn = 2™ =n = /n = 2™/2
T(n) = 2T (v/n) + logn = T(2™) = 2T(2™?) +m

Let S(m) =T(2™)

T(2™) = 2T(2™?) + m = S(m)

25(m/2) +m

= S(m) = O(mlogm)
= T'(n) =T(2™) = S(m) = O(mlogm) = O(lognloglogn)

1.2 Iteration method

e In the iteration method we iteratively “unfold” the recurrence until we “see the pattern”.

e The iteration method does not require making a good guess like the substitution method (but
it is often more involved than using induction).

— Example: Solve T'(n) = 8T (n/2) +n? (T(1) =1)

T(n) =

n? + 8T (n/2)

n®+8 <8T (2”—2> + <g>2>

n? +2n? + 22n? + 83T (%)

n? +2n? +22n2 + 2302 4+ 2402 4+ . .

— How long does it continue? 4 times where 5z = 1 =7 = logn
— What is the last term? 8'7'(1) = 8'°8™

T(n) =
logn—1

n? 4 2n? + 22n% + 2302 + 2402?44 2loen—1p2 4 glogn

— Z 2kn2 + Slogn

k=0

logn—1

— n2 Z 2k+(23)logn
k=0

2



— Now Z}f:gg_l 2% is a geometric sum so we have E}f:gg_l 2k = (28" —1) = O(n)

_ (23)10gn — (210gn)3 — ,n3

T(n)

2 Matrix Multiplication

e Let X and Y be n X n matrices

Ti1 T12 Zin
Tl T2 ZTin
X =19 z31 Z32 Zin
Tnl In2 Tnn

e We want to compute Z = X -Y

— Zij = Yop—1 Xik - Y

n?.0(n) +n®
o(n?)

e Naive method uses => n? - n = ©(n3) operations

e Divide-and-conquer solution:

e nf{en)

¢ D G H

{

(A-E+B-G)
(C-E+D-G)

(A-F+ B-H)
(C-F+D-H)

——

— The above naturally leads to divide-and-conquer solution:
* Divide X and Y into 8 sub-matrices A, B, C, and D.
* Do 8 matrix multiplications recursively.

* Compute Z by combining results (doing 4 matrix additions).

— Let’s assume n = 2¢ for some constant ¢ and let A, B, C and D be n/2 X n/2 matrices
* Running time of algorithm is T'(n) = 8T(n/2) + ©(n?) = T'(n) = O(n?)

— But we already discussed a (simpler/naive) O(n?) algorithm! Can we do better?

2.1 Strassen’s Algorithm
e Strassen observed the following:

(e

C D G H
where

(S1+ S2 — Ss+ S6)

(Sa+ Ss)

}

(56+S7) (S2+S3+S5_ST)
(B—D)-(G+ H)
(A+D)-(E+ H)
(A—C)-(E+F)

(A+B)-H

A-(F — H)

D-(G - E)

(C+D)-E



— Let’s test that S + S7 isreally C-E+ D -G

Se+S7 = D-(G-E)+(C+D)-E
= DG —DE +CE+ DE
= DG+ CE

e This leads to a divide-and-conquer algorithm with running time 7'(n) = 7T(n/2) + ©(n?)

— We only need to perform 7 multiplications recursively.

— Division/Combination can still be performed in ©(n?) time.

e Let’s solve the recurrence using the iteration method

T(n) = T7T(n/2)+ n?

7 )
_ 2 2 2

7 n n\2
_ 2 2 2

7 7\?2 n
_ 2 2 2 3

2 3 logn—1
= n’+ (212) n®+ (%) n®+ (212) n’...+ (%) n? + 708"
logn—1 ;
— 12)1 n2 + 7logn
=0 2

— Now we have the following:

1 logz n
708N —  7Togr2

(710g7 ™) (1/log7 2)

n(1/10872)

logo 7
= qloga2

nlog 7

log; n log;, a

— Or in general: a =n

So the solution is T'(n) = O(n'%87) = O(n?8!)



e Note:

— We are ’hiding’ a much bigger constant in ©() than before.
— Currently best known bound is O(n?376) (another method).

— Lower bound is (trivially) Q(n?).

— Book present Strassen’s algorithm in a somewhat strange way.

Master Method

e It be nice to have a general solution to T'(n) = aT'(n/b) +

— we do!

T(n)=aT (})+n® a>1,b>1,c>0

O(n'oer ) a > b°
= T(n) =< nlog,n + smaller-order terms a = b°

ne. 1_11 + smaller-order terms a < b¢
bC

e Note:

— In Strassen’s algorithm we had a =7, b= 2, and ¢ = 2
= b =22=4<7=a= T(n) =O(n'&2) = O(nle7)

— In merge-sort we had a =2, =2, and c =1

= b° =2 =2 =a = T(n) = O(n¢log,n) = O(nlogn)

Proof (by the iteration method)

T(n) = aT (%) +n°

- nc+a(<%>0+aT (%))

e )

b

= o+ (#)n"+a? (&) +a7 (3))
) 2

1 1
= o () ne ()0t + () 004 () e ()07 0t +alBIT(L)
— CZ{CO§%n_1 (b%)k + gloss m
CY BT (L) + nlosra by the logarithm identity
Recall geometric sum Y p_, 2% = wn;_lf 1
:

_ logbn 1 1—d°8s ™ 1_plogpd 11
a<b e =d<l= 35" d'= 150 =y -4~ T-%
T(n) = n* %" ()" i

~ ne 1*(,% +n10gba
~ nc- 1_1% = 0O(n°) since logy a < ¢

n¢, T(1) = 1.




a:bc<:>——1:>210g”n 1( ) Zlog"" 1l—logbn
T(n) 21081;” 1( ) _I_nlogba
= n-logyn + nlo&®
= n°-logyn+n°
~ nflogyn

:
a>b e & >1= T (@) =0 ((#)") = 0 (=) = © (“)
T(n) = n° @( og”n)+nl°gb“

— @( logba)+nlogba
— @(nlogba)

e Note: Book states and proves the result slightly differently. (No need to read it).

3.1 Other types of recurrences

Some important/typical bounds on recurrences:

e Logarithmic (special case of Master Method): ©(logn)
— Recurrence: T'(n) =1+ T'(n/2)
— Typical example: Recurse on half the input (and throw half away)
— Variations: T'(n) =1+ 7'(99n,/100)
e Linear: O(n)
— Recurrence: T'(n) =1+ T(n —1)
— Typical example: Single loop

— Can actually use a form of the Master Method to solve linear recurrences (even though
it is trivial to solve it directly): Let’s define the term S(2" ') = T'(n), so that S(1) =
T(1) = 1. If we define m = 2"~!, then we have

S(m) =14 8(m/2),

which by a more careful form of the Master Method implies that S(m) = 1 + logm.
Therefore, T(n) =1 +logm =1 +1log2" ! =n.

— The point is that the Master Method applies in many situations where you might not
think so at first.

— Variations: T'(n) =1+ 27 (n/2),T(n) =n+T(n/2),T(n) =T(n/5)+T(7n/10+6) +n
e Quadratic: ©(n?)

— Recurrence: T(n) =n+T(n—1)
— Typical example: Nested loops

e Exponential: ©(2")

— Recurrence: T'(n) = 2T (n — 1)



