Topic 2: Recurrences and Strassen's Algorithm

(CLRS 4.0—4.4, 28.1–28.2)

CPS 230, Fall 2001

1 Recurrences

- As we saw previously with divide-and-conquer algorithms, the analysis of recursive algorithms leads to recurrence relations.
- Merge sort leads to the recurrence $T(n) = 2T(n/2) + \Theta(n)$
 - $\text{ or rather, } T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{ If } n = 1 \\ T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + \Theta(n) & \text{ If } n > 1 \end{array} \right.$
 - but we will often cheat and just solve the simple formula (equivalent to assuming that $n = 2^k$ for some constant k).

1.1 Substitution method

- Idea: Make good guess and prove by induction.
- Let's solve T(n) = 2T(n/2) + n, T(1) = 1 using substitution
 - Guess $T(n) \le cn \log n$ for some constant c, for $n \ge 2$ (that is, $T(n) = O(n \log n)$)
 - Proof
 - * Basis: Function constant for small constant n (e.g., $T(2) = 4 \le cn \log n$ if $c \ge 2$.
 - * Induction:

Assume holds for n/2: $T(n/2) \le c\frac{n}{2}\log\frac{n}{2}$ Show holds for n: $T(n) \le cn\log n$ Proof:

$$T(n) = 2T(n/2) + n$$

$$\leq 2\left(c\frac{n}{2}\log\frac{n}{2}\right) + n$$

$$= cn\log\frac{n}{2} + n$$

$$= cn\log n - cn\log 2 + n$$

$$= cn\log n - cn + n$$

So all is fine if $c \geq 1$, since the right-hand side will be at most $cn \log n$.

- $T(n) = \Omega(n \log n)$ can be proved similarly.
- How do we make a good guess?

- Something of an art!
- Try different bounds (e.g. $\Omega(n)$ easy, show $O(n^2) \Longrightarrow \text{guess } O(n \log n)$)
- Note: changing variables can sometimes help
 - Example: Solve $T(n) = 2T(\sqrt{n}) + \log n$

Let
$$m = \log n \Longrightarrow 2^m = n \Longrightarrow \sqrt{n} = 2^{m/2}$$

 $T(n) = 2T(\sqrt{n}) + \log n \Longrightarrow T(2^m) = 2T(2^{m/2}) + m$

Let
$$S(m) = T(2^m)$$

 $T(2^m) = 2T(2^{m/2}) + m \Longrightarrow S(m) = 2S(m/2) + m$
 $\Longrightarrow S(m) = O(m \log m)$
 $\Longrightarrow T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n)$

1.2 Iteration method

- In the iteration method we iteratively "unfold" the recurrence until we "see the pattern".
- The iteration method does not require making a good guess like the substitution method (but it is often more involved than using induction).

- Example: Solve
$$T(n) = 8T(n/2) + n^2$$
 $(T(1) = 1)$

$$T(n) = n^{2} + 8T(n/2)$$

$$= n^{2} + 8\left(8T\left(\frac{n}{2^{2}}\right) + \left(\frac{n}{2}\right)^{2}\right)$$

$$= n^{2} + 8^{2}T\left(\frac{n}{2^{2}}\right) + 8\left(\frac{n^{2}}{4}\right)$$

$$= n^{2} + 2n^{2} + 8^{2}T\left(\frac{n}{2^{2}}\right)$$

$$= n^{2} + 2n^{2} + 8^{2}\left(8T\left(\frac{n}{2^{3}}\right) + \left(\frac{n}{2^{2}}\right)^{2}\right)$$

$$= n^{2} + 2n^{2} + 8^{3}T\left(\frac{n}{2^{3}}\right) + 8^{2}\left(\frac{n^{2}}{4^{2}}\right)$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 8^{3}T\left(\frac{n}{2^{3}}\right)$$

$$= \dots$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 2^{3}n^{2} + 2^{4}n^{2} + \dots$$

- How long does it continue? i times where $\frac{n}{2^i}=1\Longrightarrow i=\log n$
- What is the last term? $8^{i}T(1) = 8^{\log n}$

$$T(n) = n^2 + 2n^2 + 2^2n^2 + 2^3n^2 + 2^4n^2 + \dots + 2^{\log n - 1}n^2 + 8^{\log n}$$

$$= \sum_{k=0}^{\log n - 1} 2^k n^2 + 8^{\log n}$$

$$= n^2 \sum_{k=0}^{\log n - 1} 2^k + (2^3)^{\log n}$$

- Now
$$\sum_{k=0}^{\log n-1} 2^k$$
 is a geometric sum so we have $\sum_{k=0}^{\log n-1} 2^k = \Theta(2^{\log n-1}) = \Theta(n)$ - $(2^3)^{\log n} = (2^{\log n})^3 = n^3$

$$T(n) = n^2 \cdot \Theta(n) + n^3$$
$$= \Theta(n^3)$$

2 Matrix Multiplication

• Let X and Y be $n \times n$ matrices

$$X = \left\{ \begin{array}{cccc} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{1n} \\ x_{31} & x_{32} & \cdots & x_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{array} \right\}$$

• We want to compute $Z = X \cdot Y$

$$-z_{ij} = \sum_{k=1}^{n} X_{ik} \cdot Y_{kj}$$

- Naive method uses $\implies n^2 \cdot n = \Theta(n^3)$ operations
- Divide-and-conquer solution:

$$Z = \left\{ \begin{array}{cc} A & B \\ C & D \end{array} \right\} \cdot \left\{ \begin{array}{cc} E & F \\ G & H \end{array} \right\} = \left\{ \begin{array}{cc} (A \cdot E + B \cdot G) & (A \cdot F + B \cdot H) \\ (C \cdot E + D \cdot G) & (C \cdot F + D \cdot H) \end{array} \right\}$$

- The above naturally leads to divide-and-conquer solution:
 - * Divide X and Y into 8 sub-matrices A, B, C, and D.
 - * Do 8 matrix multiplications recursively.
 - * Compute Z by combining results (doing 4 matrix additions).
- Let's assume $n=2^c$ for some constant c and let A, B, C and D be $n/2 \times n/2$ matrices
 - * Running time of algorithm is $T(n) = 8T(n/2) + \Theta(n^2) \Longrightarrow T(n) = \Theta(n^3)$
- But we already discussed a (simpler/naive) $O(n^3)$ algorithm! Can we do better?

2.1 Strassen's Algorithm

• Strassen observed the following:

$$Z = \left\{ \begin{array}{cc} A & B \\ C & D \end{array} \right\} \cdot \left\{ \begin{array}{cc} E & F \\ G & H \end{array} \right\} = \left\{ \begin{array}{cc} (S_1 + S_2 - S_4 + S_6) & (S_4 + S_5) \\ (S_6 + S_7) & (S_2 + S_3 + S_5 - S_7) \end{array} \right\}$$

where

$$S_1 = (B - D) \cdot (G + H)$$

 $S_2 = (A + D) \cdot (E + H)$
 $S_3 = (A - C) \cdot (E + F)$
 $S_4 = (A + B) \cdot H$
 $S_5 = A \cdot (F - H)$
 $S_6 = D \cdot (G - E)$
 $S_7 = (C + D) \cdot E$

– Let's test that $S_6 + S_7$ is really $C \cdot E + D \cdot G$

$$S_6 + S_7 = D \cdot (G - E) + (C + D) \cdot E$$

= $DG - DE + CE + DE$
= $DG + CE$

- This leads to a divide-and-conquer algorithm with running time $T(n) = 7T(n/2) + \Theta(n^2)$
 - We only need to perform 7 multiplications recursively.
 - Division/Combination can still be performed in $\Theta(n^2)$ time.
- Let's solve the recurrence using the iteration method

$$\begin{split} T(n) &=& 7T(n/2) + n^2 \\ &=& n^2 + 7\left(7T\left(\frac{n}{2^2}\right) + \left(\frac{n}{2}\right)^2\right) \\ &=& n^2 + \left(\frac{7}{2^2}\right)n^2 + 7^2T\left(\frac{n}{2^2}\right) \\ &=& n^2 + \left(\frac{7}{2^2}\right)n^2 + 7^2\left(7T\left(\frac{n}{2^3}\right) + \left(\frac{n}{2^2}\right)^2\right) \\ &=& n^2 + \left(\frac{7}{2^2}\right)n^2 + \left(\frac{7}{2^2}\right)^2 \cdot n^2 + 7^3T\left(\frac{n}{2^3}\right) \\ &=& n^2 + \left(\frac{7}{2^2}\right)n^2 + \left(\frac{7}{2^2}\right)^2 n^2 + \left(\frac{7}{2^2}\right)^3 n^2 \dots + \left(\frac{7}{2^2}\right)^{\log n - 1} n^2 + 7^{\log n} \\ &=& \sum_{i=0}^{\log n - 1} \left(\frac{7}{2^2}\right)^i n^2 + 7^{\log n} \\ &=& n^2 \cdot \Theta\left(\left(\frac{7}{2^2}\right)^{\log n - 1}\right) + 7^{\log n} \\ &=& n^2 \cdot \Theta\left(\frac{7^{\log n}}{(2^2)^{\log n}}\right) + 7^{\log n} \\ &=& n^2 \cdot \Theta\left(\frac{7^{\log n}}{n^2}\right) + 7^{\log n} \\ &=& n^2 \cdot \Theta\left(\frac{7^{\log n}}{n^2}\right) + 7^{\log n} \\ &=& \Theta(7^{\log n}) \end{split}$$

- Now we have the following:

$$7^{\log n} = 7^{\frac{\log_7 n}{\log_7 2}}$$

$$= (7^{\log_7 n})^{(1/\log_7 2)}$$

$$= n^{(1/\log_7 2)}$$

$$= n^{\frac{\log_2 7}{\log_2 2}}$$

$$= n^{\log 7}$$

- Or in general: $a^{\log_k n} = n^{\log_k a}$

So the solution is $T(n) = \Theta(n^{\log 7}) = \Theta(n^{2.81...})$

- Note:
 - We are 'hiding' a much bigger constant in $\Theta()$ than before.
 - Currently best known bound is $O(n^{2.376..})$ (another method).
 - Lower bound is (trivially) $\Omega(n^2)$.
 - Book present Strassen's algorithm in a somewhat strange way.

3 Master Method

• It be nice to have a general solution to $T(n) = aT(n/b) + n^c$, T(1) = 1.

— we do!

$$T(n) = aT\left(\frac{n}{b}\right) + n^{c} \quad a \ge 1, b \ge 1, c \ge 0$$

$$\implies T(n) = \begin{cases} \Theta(n^{\log_{b} a}) & a > b^{c} \\ n^{c} \log_{b} n + \text{smaller-order terms} & a = b^{c} \\ n^{c} \cdot \frac{1}{1 - \frac{a}{b^{c}}} + \text{smaller-order terms} & a < b^{c} \end{cases}$$

- Note:
 - In Strassen's algorithm we had a = 7, b = 2, and c = 2 $\implies b^c = 2^2 = 4 < 7 = a \Longrightarrow T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log 7})$
 - In merge-sort we had a=2, b=2, and c=1 $\implies b^c=2^1=2=a \implies T(n)=\Theta(n^c\log_b n)=\Theta(n\log n)$

Proof (by the iteration method)

$$T(n) = aT\left(\frac{n}{b}\right) + n^{c}$$

$$= n^{c} + a\left(\left(\frac{n}{b}\right)^{c} + aT\left(\frac{n}{b^{2}}\right)\right)$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + a^{2}T\left(\frac{n}{b^{2}}\right)$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + a^{2}\left(\left(\frac{n}{b^{2}}\right)^{c} + aT\left(\frac{n}{b^{3}}\right)\right)$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + \left(\frac{a}{b^{c}}\right)^{2}n^{c} + a^{3}T\left(\frac{n}{b^{3}}\right)$$

$$= \dots$$

$$= n^{c} + \left(\frac{a}{b^{c}}\right)n^{c} + \left(\frac{a}{b^{c}}\right)^{2}n^{c} + \left(\frac{a}{b^{c}}\right)^{3}n^{c} + \left(\frac{a}{b^{c}}\right)^{4}n^{c} + \dots + \left(\frac{a}{b^{c}}\right)^{\log_{b}n-1}n^{c} + a^{\log_{b}n}T(1)$$

$$= n^{c}\sum_{k=0}^{\log_{b}n-1}\left(\frac{a}{b^{c}}\right)^{k} + a^{\log_{b}n}$$

$$= n^{c}\sum_{k=0}^{\log_{b}n-1}\left(\frac{a}{b^{c}}\right)^{k} + n^{\log_{b}n}$$
 by the logarithm identity

Recall geometric sum $\sum_{k=0}^n x^k = \frac{x^{n+1}-1}{x-1}$

•
$$a < b^c$$

5

$$\bullet \quad \boxed{a = b^c}$$

$$\begin{array}{ll} a = b^c \Leftrightarrow \frac{a}{b^c} = 1 \Longrightarrow \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k = \sum_{k=0}^{\log_b n - 1} 1 = \log_b n \\ T(n) &= \sum_{k=0}^{\log_b n - 1} \left(\frac{a}{b^c}\right)^k + n^{\log_b a} \\ &= n^c \cdot \log_b n + n^{\log_b a} \\ &= n^c \cdot \log_b n + n^c \\ &\sim n^c \log_b n \end{array}$$

 $\bullet \mid a > b^c \mid$

$$a > b^{c} \Leftrightarrow \frac{a}{b^{c}} > 1 \Longrightarrow \sum_{k=0}^{\log_{b} n - 1} \left(\frac{a}{b^{c}}\right)^{k} = \Theta\left(\left(\frac{a}{b^{c}}\right)^{\log_{b} n}\right) = \Theta\left(\frac{a^{\log_{b} n}}{(b^{c})^{\log_{b} n}}\right) = \Theta\left(\frac{a^{\log_{b} n}}{n^{c}}\right)$$

$$T(n) = n^{c} \cdot \Theta\left(\frac{a^{\log_{b} n}}{n^{c}}\right) + n^{\log_{b} a}$$

$$= \Theta(n^{\log_{b} a}) + n^{\log_{b} a}$$

$$= \Theta(n^{\log_{b} a})$$

• Note: Book states and proves the result slightly differently. (No need to read it).

3.1 Other types of recurrences

Some important/typical bounds on recurrences:

- Logarithmic (special case of Master Method): $\Theta(\log n)$
 - Recurrence: T(n) = 1 + T(n/2)
 - Typical example: Recurse on half the input (and throw half away)
 - Variations: T(n) = 1 + T(99n/100)
- Linear: $\Theta(n)$
 - Recurrence: T(n) = 1 + T(n-1)
 - Typical example: Single loop
 - Can actually use a form of the Master Method to solve linear recurrences (even though it is trivial to solve it directly): Let's define the term $S(2^{n-1}) = T(n)$, so that S(1) = T(1) = 1. If we define $m = 2^{n-1}$, then we have

$$S(m) = 1 + S(m/2),$$

which by a more careful form of the Master Method implies that $S(m) = 1 + \log m$. Therefore, $T(n) = 1 + \log m = 1 + \log 2^{n-1} = n$.

- The point is that the Master Method applies in many situations where you might not think so at first.
- Variations: T(n) = 1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(7n/10 + 6) + n
- Quadratic: $\Theta(n^2)$
 - Recurrence: T(n) = n + T(n-1)
 - Typical example: Nested loops
- Exponential: $\Theta(2^n)$
 - Recurrence: T(n) = 2T(n-1)