Asymptotic Growth (2)

1 ANNOUNCEMENTS

More email addresses?? received only 5 so far.

2 RECURSION

2.1 Review

We saw two multiplication algorithms for a x b.

o “Naive” implemented multiplication by successive addition. Running time appears
linear in a.

e “Russian” implemented multiplication by a base-2 version of the standard grade school
multiplication algorithm. Running time appears logarithmic in a.

Today we’ll analyze the algorithm formally.

2.2 Recursive Russian

Recursion just means solving a problem by reducing it to a smaller instance of the same
problem.

“Reducing” just means calling a subroutine. “Smaller problem” means different things, but
the basic idea is that we are making measurable progress to the final answer.

int RussianRec(int a, int b)
// implements Russian Peasant Algorithm recursively

{
if (a == 0) return 0;
else if (1 == a % 2)
return(b+ RussianRec(a >> 1, b) << 1);
else
return(RussianRec(a >> 1, b) << 1);
t

2.3 Discussion

RUSSIANREC has no explicit loop. Instead, we express the answer in terms of itself!
This is not circular because:

e There is a “termination” variable, a.

e This variable makes steady progress towards the termination condition.

2.4 Concrete Example

9.3 = 3424-3) = 27
} 43 = 202-3) = 12 1
} 23 = 201-3) = 6 1
l 13 = 3420-3) = 3 ¢
} 03 = 0 — 0

2.5 Exponentiation

I had planned to present the classic “exponentiation by repeated squaring algorithm” sepa-
rately today. But then I realized that it’s exactly the same as recursive Russian!
Homework: Write a recursive algorithm for computing a® (where both a and b are positive
integers). Analyze its correctness and efficiency. The number of recursive calls it makes
should be logarithmic.

2.6 Divide and Conquer

When a is even...

a

ab = b+b+b+b+b+---+b+b

a/2 a/2

= btb+-+btb+b+---+b

a/2
—TN—
- 2(b+b+---+b>

a

b+b+b+btbtbt---+btb
(a-1)/2 (a-1)/2

= b+btb+ - +btb+bt - 4b

(a=1)/2
—_—
= b+2(b+b+---+b)

When a is odd...

ab

We solve the problem by breaking it into roughly equal-size subproblems, solving them
separately, then combining the results (in this case, there’s just one subproblem).

Rule #2 of Good Algorithm Design: Divide-and-Conquer!

2.7 Analysis

Correctness [Step 2] follows from the derivation we gave.

We’ll measure efficiency in terms of the number of recursive calls as a function of a. This
is a good predictor of runtime as long as ab fits in a single integer variable. (Assumes the
addition takes unit time.)

2.8 A Recurrence Relation

We want to know the number of iterations (now recursive calls) it takes to multiply a and
b. We can figure this out fairly directly from the recursive expression of the algorithm. Let
T'(a) be the number of iterations of Russian when run on input a.

(Aside: why isn’t b needed here?)
We can argue:

e lfa=1T(a)=1,
e Ifa>1andaisodd, T(a)=14+T((a —1)/2),
e Ifa>1andaiseven, T(a)=1+T(a/2).

Now, it is a simple matter to prove by induction that 7T'(a) =1 + |log(a)].

2.9 Induction Proof

Theorem: For an integer a > 1, we can divide a by two (and round down) 1+ [log(a)]| times
before we get down to zero.
Proof: For a > 1, let T'(a) be the number of times we can divide a by 2 (and round down)
before we get down to zero.

We can express T recursively as: T'(1) =1, and fora > 1, T'(a) =1+ T([(a/2)]).
We want to show that T'(a) =1+ |log(a)].

e Base Case: a = 1.

; 1+ |0]
= 1+ [log(1)]
= 1+ [log(a)).

Correct.

e Next, note that any number greater than one, divided by 2 and rounded down gives
a result strictly less than the original number and greater than or equal to one. (You
could prove this by induction, too.)

e Inductive step: Assume that for all a’ < a. the theorem holds.

T'(a) = (L /2])+1
= 1+ [log(a/2)] +
= 2+ [log(a) — 10g()]
= 2+ [log(a) — 1]
= 1+ [log(a)].
Correct!
e QED.

2.10 About Proofs

The previous proof by induction was relatively formal. I want you to use this form initially
when I ask for proofs by induction in the first homework. This will help familiarize you with
the important parts of such a proof.

However, very few (if any) proofs are completely formal.

A proof is something one human being uses to convince another (intelligent but skeptical)
human being that something is true.

Nothing magic about this. The important rule is that, instead of convincing someone by
appealing to sympathy or threats, a proof begins with axioms as the basic truths and uses
logic as the mechanism for deriving one true statement from another.

2.11 Summary

We’ve now seen several different algorithms, analyzed their correctness and their efficiency
exactly in terms of an iteration count. What progress!
Next, we’ll generalize some of what we learned.

3 ASYMPTOTIC GROWTH

3.1 Comparing Algorithms

We want to compare algorithms to decide which we prefer.

1. But. there are many dimensions along which we might compare. So, we decide that
what really matters is running time.

2. But, running time depends on input. So. we decide that what really matters is running
time as a function of input size.

3. But, this can be hard to characterize. So, we decide that what really matters is worst-
case running time as a function of input size.

4. But, one algorithm might be better on small inputs and the other on large inputs. So,
we decide that what really matters is worst-case running time as a function of input
size for large inpuls.

5. But, this can still be quite hard to determine precisely. So. we decide that what really
matters is worst-case running time as a function of input size for large inputs, ignoring
constant factors.

3.2 Asymptotic Growth

This leads us directly (!) to a notion of asymptotic growth.
Function g(n) is asymptotically bigger than function f(n) if, for any scaling factor ¢ > 0,

there’s some threshold ng such that g(n) > ¢f(n) for all n > ny.
250 w w \ \

200 -
150
100

50 |

0 100 200 300 400 500

3.3 Example

By this definition, g(n) = 1/2n is asymptotically bigger than f(n) = 8y/n. Why? Well, give
me any scaling factor c.

9(no) > cf(no)
1/2ng > ¢(8y/no)
no > 16ey/ng
no/y/no > 16¢
Vnog > 16¢
ng > 256¢

[

So, any ng at least that big will satisfy the conditions of the definition.

3.4 Counterexample

On the other hand, g(n) = 2n? is not asymptotically bigger than f(n) =n? —n + 5.
Take the constant ¢ = 3. We have g(n) < ¢f(n) for all n.

On the other hand, f(n) is not asymptotically bigger than g(n) either.
120 w w w \ \

(n**2-n+5) -~
100 - 3F(N**2-n+5)

80 |
60 |
40 |

20 -

0

3.5 Big Theta

The notion of asymptotic growth can be used to partition the space of functions.

Two functions f(n) and g(n) are “equal” if neither is asymptotically bigger than the other.
We write this as f(n) = O(g(n)).

Formally, f(n) = ©(g(n)) if and only if there exists scaling factors ¢; and ¢; and threshold
ng such that 0 < ¢;9(n) < f(n) < e2g(n) for all n > ny.

It’s an f(n) sandwich on g(n) bread!

3.6 Examples
o 1/2n = O(n)
o 8y = O(v/7)
o n?—n+5=0(n?) =2
o F(n) = O(log(n))
e Tn* +2n® —4nlogn + y/n = O(n?)

3.7 Base of Logs
log;o(n) = O(logy(n))

f(n) = loge(n)

10/0 = p
10%2(10f)) = logy(n)
f(n)log,(10) = log,(n)
f(n) = logy(n)/log,(10)

So for ¢; = (1/2)/log,(10), ¢ = 2/1og,(10), ng > 0,
0 < erlogy(n) < f(n) < calogy(n) for all n > ng.

3.8 Complete Set

Big Theta gives us a notion of asymptotic equality. We also have symbols for all of the other
comparative notions as well.

f(n) =o(g(n)) =~ f(n)<g(n)
J(n) = 0(g(n)) =~ [(n) <g(n)
J(n) =0(g(n)) ~ [(n)=g(n)
J(n) =Q(g(n)) =~ [(n) = g(n)
J(n) =w(g(n)) =~ [f(n)>g(n)

3.9 Big O

Everyone has probably heard of big-O.

When we say the running time of a sorting algorithm is O(n?), we are giving an asymptotic
upper bound on the running time for all inputs of size n.

This is often what we want. However, saying that the running time is ©(n?) is often a more
precise way of saying the same thing.

Note that f(n) = ©(g(n)) implies f(n) = O(g(n)).

3.10 Some Technical Details

The “big” and “little” functions behave almost exactly like their standard real-number coun-
terparts: transitivity, reflexivity, symmetry, and transpose symmetry.

However, one standard property does not hold: trichotomy. There are pairs of functions
f(n) and g(n) such that none of f(n) = o(g(n)), f(n) = ©(g(n)). nor f(n) = w(g(n)) holds.
The book gives an example of n!™"” which can’t be compared directly to n because it often
acts like n?.

3.11 Applying to Algorithms

Also, in using these functions to describe algorithms. there are a few things to note.

e If we say the algorithm’s running time is O(r?), it means its worst-case running time
is O(n?), but its best case might be better.

e If we say the algorithm’s running time is Q(n), it means its best-case running time is
Q(n), but its worst-case might be worse.

e Therefore, an algorithm with running time ©(nlogn) takes ©(nlogn) on all inputs of
size n.

3.12 Math in Big Theta World

Here are some examples of reductions we can do when we’re inside a big theta.

e 14+1=1

o I0n+6=n

o 2+l = on

e 5y/nlogn +21log’n = \/nlogn
o 220 = 4

In general. we’d like to report functions in their simplest possible form.

3.13 An Example with Proof

6nlogn + /nlog’n = O(nlogn).

Need to find ng. ¢;. and ¢y, such that

cinlogn < 6nlogn + /nlog’n < conlogn

c1=5,c="T.n9=...

Note: Implications go up. That is. we want to find something at the bottom that will
logically imply the statement we're starting with.

Snglogng < 6nglogng + \/n_olog2 no
Snglogng < 6nglogng,ng > 1
0 < nglogng,ng > 1
ng > 1

So. ng = 3 suffices.

6ng logng + \/ﬁlog2 no
6no + /no log ng

/1o log ng

log ng

no

AR VAN VAN VAN VAN

Tng log ng

7?’&0

v 1o
0

