Analysis of Quicksort (5)

1 PROBLEM WITH QUICKSORT

1.1 Review

Last time, we talked about several algorithms for sorting.

e Insertion sort, bubble sort, and selection sort are all ©@(n?) algorithms in the worst
case.

e Merge sort is O(nlogn) in the worst case.

e Quicksort is a lot like merge sort on average...

1.2 Quicksort Algorithm

Start with an array A with elements 0 ton — 1.
Call quicksort(data, 0, data.size() - 1) to sort all elements from 0 to n — 1.

void quicksort(vector<int> & data, int start, int end)
{
if(start < end)
{
int boundary = partition(data, start, end, start);
quicksort(data, start, boundary-1);
quicksort(data, boundary + 1, end);
t
t

1.3 Partition

Here, partition(data,i,j,1) partitions array elements A[i] through A[j] around A[l]. It
returns k. the index where the partition element ends up.

i .. k=1 k E+1 ... j

After partitioning, element k is in its correct, sorted place, all the elements from ¢ to k—1 are
less than A[k], and all the elements from k 4 1 to j are greater than A[k] (and transitively,
elements ¢ through k£ —1).

1.4 Analysis

The running time depends a lot on where k& ends up. We call this the split.
If k£ is equal to ¢ or j every time, we get

e T'(n)=n+T(n—1); T(n) = O(n?).

This is a very bad split.
If k£ is halfway between ¢ and j, we get

e I'(n)=n+2T(n/2); T(n) = O(nlogn).

This is a very good split.
In fact, it is possible to show that the running time is O(n?) and Q(nlogn); these are the
worst and best cases, respectively.

1.5 Expected Case?

This analysis doesn’t really tell us what to expect. In practice, quicksort behaves like a fast

nlog n algorithm, but our focus on worst-case running time tells us it’s n?.

What gives?

The fact of the matter is, we can always force this version of quicksort to take quadratic
time by a careful choice of input. Like?

In general, any deterministic scheme for picking the pivot is susceptible to being manipulated
into consistently bad splits.

1.6 Rock, Paper, Scissors

This is actually a fairly general phenomenon.
Rock, Paper, Scissors:

1. rock smashes scissors,
2. scissors cut paper,

3. paper covers rock.

Strategies:
e Always rock.
e Alternate rock-paper-scissors.

e First rock, then whatever opponent chose last time.

1.7 Importance of Being Random

If T “publish” my deterministic strategy, you crush me.

What if I use a randomized strategy? Even if I tell you what it is, you don’t get any leverage
over me.

Expected tie game, regardless of your strategy.

Best case: win; worst case: loss; average over many games: draw.

1.8 Preview

We can use this insight to adapt quicksort so that it has the same sort of behavior.

We will pick our pivot randomly.

Sometimes this will lead to a bad split, and sometimes to a good split. but no one can force
a bad split.

This will lead to an algorithm with expected running time of ©(nlogn).

2 PROBABILITY THEORY

2.1 Probability

To formalize this sort of argument, we're going to appeal to probability theory.
Intuitively, we say an event has probability p, if, given identitical circumstances, the event

occurs 1000p out of 1000 times.
For example, if there is a 1% chance of thunderstorms today, then only one day like this out
of 100 ends up with thunderstorms.

2.2 Language of Probability
Basic concepts:
o We assign probabilities to outcomes of experiments.
e A possible outcome ¢ is called an elemental event.
e The set S of all elemental events is called the sample space.

e The elemental events are mutually exclusive and exhaustive, that is, they partition the
sample space.

o A set A of elemental events is an event.

Concrete example: coin flip.

2.3 Axioms of Probability
Axioms:
1. Pr{A} > 0 for any event A.
2. Pr{S} = 1.
3. Pr{AU B} = Pr{A} + Pr{B} for disjoint events A and B.

2.4 Probability Properties
From the axioms, we can conclude:

o 0 < Pr{A} <1 for all events A.

o Pr{A} = ¥.c, Pric}
Additional terms:

o Pr{A} is the probability of event A.

e An assignment of probabilities to all elemental events is a discrete probability distribu-
lion.

e The discrete probability distribution Pr{e} = 1/|S] for all ¢ € S is called the uniform

distribution.

2.5 Counting

Often, to assign probabilities to events. we need to know how many events there are.
Some standard examples:

e Number of binary numbers with 10 bits: 2!° = 1024.
e Number of possible four letter words starting with a vowel: 5 - 26% = 87880.

e Number of permutations of “algorithm”™: 9! = 362880.

e Number of distinct permutations of “abba”: (;l) = 2‘,1—;, = 6.

2.6 Combinatorial Sample Spaces

We can build complex sample spaces out of simpler ones.

o Let sample space S be the outcomes of a single coin-flip experiment: S; = {heads, tails},

with Pr{heads} = Pr{tails} = 1/2 (uniform distribution).

e Let S5 be the outcomes of an ordered pair of coin-flip experiments: S, = 57 x 57 =
{heads heads, heads tails, tails heads, tails tails}.

e Assuming independent and identically distributed (i.i.d.) trials, we can infer, e.g.,
that Pr{tails heads} = Pr{tails} Pr{heads} = 1/4. The resulting distribution is again

uniform.

Similarly, we can define a uniform distribution over the sample space of permutations out of
a smaller number of simpler sample spaces.

2.7 Coin-flip Experiment

What’s the probability that we pick a number near the middle (2-5)?
Coin flip to numbers:

e TTT O
e TTH 1
o THT 2
e THH 3
o HTT 4
e HTH 5
e HHT 6
e HHH 7

Estimated probability is success divided by attempts.

2.8 Expectation

Sometimes we associate a numerical value with each elemental event and want to know the
average or expecled value.

Let f: S — R. The expected value of fis E[f] =Y .cs Pr{e}f(e).

For example, what’s the expected coin flip value from the previous experiment?

Note that this is not saying that one value is more likely than the others. It is identifying
the average value we get if we repeat the experiment.

2.9 Expected Running Time

We can use the notion of expectations to characterize the running time of a randomized
algorithm.

The expected running time is 3", ¢ Pr{t}, where ¢ is a possible running time for the algorithm
and Pr{t} is the probability that this running time occurs.

2.10 Example

Note that there are cases in which the expected running time of an algorithm is very fast,
but there is no bound on the worst-case running time.

HAVEGIRL()

1 repeat

2 kid < RANDBABY()
3 until SEX(kid) = female

4 return

e I'=1+1/2(0)4+1/2T
o I'=14+1/241/44+1/8+ ...
o T'=2

3 RANDOMIZED QUICKSORT

3.1 Basic Idea

To avoid getting slammed with a worst-case input, we're going to pick our pivots randomly
from the set of possible pivots.

Caveat: Our analysis will assume that elements in the list are distinct so there are no
tie-breaking issues on the final position of the pivot. If we define the algorithm properly,
duplicate elements in the list only help, so we ignore this case here.

3.2 Code

void quicksort(vector<int> & data, int start, int end, RandGen & rand)
{
if(start < end)
{
int boundary = partition(data, start, end,
rand.RandInt(start, end));
quicksort(data, start, boundary, rand);
quicksort(data, boundary + 1, end, rand);

by

void quicksort(vector<int> & data)

{

RandGen rand;

quicksort(data, 0, data.size() - 1, rand);
}

3.3 Expected-Case Recurrence

Because we select the pivot at random, we are equally likely to get each possible split.
We can express the expected running time as:

e 1'(0)=0
e I'(n) = nll[n—l—T(k)—l—T(n—k—l)]
o =t LSIST(R) 4 Tln— k1)

k is the number of “lows.”

3.4 Good and Bad Splits

To simplify our analysis of this recurrence, we will artificially divide the world into two
categories.

e A good split is one in which i +1/4 (j — i+ 1) <k<j—-1/4(j—i+1).
e A bad split is one in which1 <k <i+1/4(j—i+Dorj—1/4(—1+1)<k<y.

The probability of a good split is 1/2 and the probability of a bad split is 1/2.

3.5 Expected Run Time

We get a mix of good and according to their relative probabilities.

n—1

Tn) = n+1/n Z:[T(k‘)—I—T(n—k'—l)]

_ n+%7§[T(k~)—|—T(n—k—1)]
k=n/2
9 3n/4 9 n-l
= n+— > [Tk)+Tn—k-1)]+ +~ Mo [T(k)+T(n—k—1)]
k=n/2 k=3n/4
3n/4 _
n—l—gZ[T(3n/4) + T(n/4)] + Z T(n—1)+T(0)]

k=n/2 =3n/4

IN
3|[\§

IA

nt (/)T (30/4) + T(n/4)] + ~(0/4)T(n ~ 1)
< n+1/2[T(3n/4) + T(n/4)] + 1/2 T(n — 1)

3.6 Asymptotic Bound

Now, we want to show that 7'(n) < ¢nlogn for some constant c.
o True for small n.

e Assume true for n’ < n.
T(n) n+1/2[T3Bn/4)+T(n/4)]+1/2T(n—1)
n+1/2 [¢(3n/4)log(3n/4) + c(n/4)log(n/4)] + 1/2 ¢(n — 1) log(n — 1)
n + ¢(3n/8)log(n) — ¢(3n/8)log(4/3) + ¢(n/8)log(n) — ¢(n/8)log(4) + c¢n/2log(n)
n + ¢(8n/8)log(n) — ¢(3n/8)(2 — log(3)) — ¢(n/4)
enlog(n) 4+ n(1 —¢(3/8)(2 —log(3)) — ¢/4)
cnlogn,if ¢ >3

VANVANR VA

IN

So, T'(n) = O(nlogn)

3.7 Wrap Up

Probability of getting lots of bad splits is very small. With high probability we divide the
list into fractional pieces (instead of just nibbling off a constant-size piece). This is enough
balance to get asymptotic nlogn running time.

We could also prove an nlogn lower bound on the expected running time (but we won’t).

