Binary Search Trees (8)

1 BINARY SEARCH TREES

1.1 Binary-Search-Tree Definition

An n-node binary tree.

Not necessarily complete.

All nodes j (other than leaves) satisfy the "binary-search-tree property": $key(i) \le key(j) \le key(k)$. Here, i is in j's left subtree, and k is j's right subtree.

In terms of the array representation: $T_v[i] \leq T_v[j] \leq T_v[k]$.

Example...

Note: not enough that the property just holds for immediate children. Must hold for the entire family line.

1.2 Some Properties of Binary Search Trees

Height is O(n) (imbalanced) and $\Omega(\log n)$ (balanced). Where are largest and smallest elements?

In what sense does each position in the tree represent a range?

1.3 Finding a Key

Search for node with key x. Start with i as the root.

```
typedef int** Tree;

#define NULL 0

int value = 0;
int parent = 1;
int left = 2;
int right = 3;

int Find( Tree T, int x, int i ) {
  if( i == NULL ) {
    return NULL;
}
```

```
if( x == T[value][i] ) {
   return i;
}
if( x < T[value][i] ) {
   return Find(T, x, T[left][i]);
}
return Find(T, x, T[right][i]);
}</pre>
```

Running time in terms of height of tree? How does this compare to doing the same thing in a heap?

How find minimum? Running time? Compared to heap? Easily extended to insert x if it is not found.

1.4 Listing Items in Order

```
void Sort_Tree( Tree T, int i ) {
  if( i == NULL ) {
    return ;
  }
  Sort_Tree(T, T[left][i]);
  cout << T[value][i] << endl;;
  Sort_Tree(T, T[right][i]);
  return;
}</pre>
```

Running time? How prove this?

1.5 Where is the Successor?

We can derive a simple (?) rule for determining the node in the binary search tree that immediately follows node i in the sorted order (returns NULL for max element in tree):

```
int Successor( Tree T, int i ) {
  int j;
  if( T[right][i] != NULL ) {
    j = T[right][i];
    while( T[left][j] != NULL ) // T[leftcolor][j] = black;
        j = T[left][j];
    return j;
  }

j = T[parent][i];
while( T[parent][j] != NULL && j == isrightchild(T, j))
    j = T[parent][j]; // T[rightcolor][j] = black;
```

```
return T[parent][j];
}
```

Running time in terms of the height of the tree?

How do test for being a right child?

How could this be used to delete an element from the tree?

How could this be used to sort?

1.6 Deleting

We want to delete a node i.

- If i has zero child, delete it.
- If i has one child, delete i and move i's child into i's place.
- If i has two children, let j be the successor of i. Delete j in place (it has at most one child, so that's easy). Now, move j into i's place.

Why is this well defined? In particular, how do we know that j has at most one child?

1.7 Successor Tree Walk

```
void Sort_Tree_Succ( Tree T, int i ) {
  i = Find_Min(T, i);

while (i != NULL) {
  cout << T[value][i] << endl;;
  i = Successor( T, i );
  }
}</pre>
```

How implement Find_Min? How analyze the algorithm?

1.8 Successor Tree Walk: Analysis

$$\Phi(T,i) = n - \text{rank}(i) + \sum_{j} (\chi(T_{lc}[j] = \text{white}) + \chi(T_{rc}[j] = \text{white}))$$

Each operation increments the rank of i, and, on each iteration of a while loop, makes at least one edge "black". (This can include "Find Min" as well.) Upper bound on maximum value of potential function is 3n.

1.9 Successive Insertions and Deletions

We know that nearly balanced trees are best because find, insertion, and deletion all run in O(h), which is $O(\log n)$ if the tree isn't too stringy.

But, even if we start off with a nice balanced tree, it might not be balanced anymore after a sequence of insertions and deletions.

Sugar Pine: unbalanced Coulter Pine: balanced

2 ROTATIONS

2.1 Complete Binary Search Tree

Given a list of numbers, we could create a well-balanced binary search tree.

- \bullet Sort A.
- \bullet Pick i as the appropriate halfway point. Let i be the root.
- Make a complete binary search tree out of A[1] through A[i-1] and make it the left subtree. Do the same with A[i+1] through A[n] and make it the right subtree.

If we choose i to be $\lfloor (n-1)/2 \rfloor$, what is the height of the tree? How prove? Running time?

How can we choose i so that the resulting tree is complete (i.e., deepest level is "left justified")?

2.2 Recovering from Bad Luck

Sorting is a rather drastic way to make a binary search tree balanced. Sometimes we can get by with more "local" adjustments.

2.3 Rotation

Swap a node and its parent.

Fix links to the kids to maintain the binary-search-tree property.

HW: Write pseudocode.

Running time in terms of the height of the tree?

What happens to the depths of nodes?

2.4 Nearly Balanced Trees

There are a collection of algorithms that use special rules to decide which rotations to apply when inserting and deleting elements to ensure that the binary search tree stays *nearly* balanced.

Nearly balanced means, for example, that the number of nodes in the left or right subtree is never fewer than 1/3 of the total number of nodes. This holds for all levels.

 $T(n) \le T(2n/3) + 1...$ what is T(n)?

Example algorithms: red-black trees, 2-3 trees.

Insertion, deletion, find, all in $O(\log n)$, worst case.

2.5 A Tradeoff

The worst-case algorithms are complicated to implement but relatively simple to analyze. Next we'll talk about splay trees... relatively simple to implement, but harder to analyze. Gets us $O(\log n)$ insert, delete, and find, but only averaged over a sequence of operations. But good constant factors and simple implementation is a win.

3 LISTING LARGEST ELEMENTS

Let's think about solving the following problem. A web search engine matches queries against all the documents in a database and computes a score for each. It then needs to present the best documents to the user, in order.

Step 0: Formalize problem.

Step 1: Propose algorithms.

Step 2: Prove correctness.

Step 3: Prove running-time bounds.