Splay Trees (9)

1 SPLAY TREES

1.1 Review

We want to support fast insertions, deletions, and finds into a binary search tree.

Standard binary search trees don’t cut it because operations take too long: as much as O(n)
for stringy trees.

Balanced binary search trees remedy this, but are complex to implement, and rebalancing
has a fair amount of overhead.

Splay trees are easy to implement, but tricky to analyze. They give bushy trees in an
amortized sense, that we will discuss.

1.2 Basic Idea

We allow the tree to become unbalanced.

The downside is that we might need to spend a lot of time finding a node that is deeper
than it ought to be.

To make up for this, whenever we find a node., we move it up to the top!

Demonstrate rotation.

1.3 Splaying a Node

Brings node z to the top, two levels at a time.
Three rotation-pair cases:

e Zig: Child of root w... rotate node.
o Zig-zag: Left child of a right child z of w or right child of a left child... rotate node

twice.

o Zig-zig: Left child of a left child y of z or right child of a right child... rotate parent,
then rotate node.
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Splay Properties

We can observe what happens to the depth of various nodes in the tree when we splay .

The splayed node z?
Children of =7

Other nodes?

Nodes along the path to the splayed node?

1.10 Operations Using Splays

We can perform all the standard binary-search-tree operations in terms of splays.

Find: Locate the node, splay it to the top. If node is not found, splay last found node
to the top.

Min: Find —oc.
Max: Find oc.
Successor: Find node. Compute min of right subtree. (Much easier!)

Alternate insert: Find node. Find min in right subtree (or max in left subtree, de-
pending on what was found). It will have no left (or right, respectively) child, and
therefore a place for the new element.

Delete: Find node. Find max of left subtree. It will have no right child. so make the
right subtree the new right child.



1.11 Splay Sort

Do a sequence of inserts, then traverse the resulting tree. How?
Find min, then a series of successors.
Running time: Clearly O(r?). Why?

A splay just goes to the bottom and rotates back up. That's O(n). So, a sequence
of n is O(n?).

We will see, in fact, that any sequence of k splays on a tree with n nodes runs in O(klogn).
Amazing!

We will use potential functions and amortized analysis to show this.

Therefore, what is splay sort’s running time?

O(nlogn).

2 AMORTIZED ANALYSIS

2.1 Idea of Amortized Analysis

Closely related to the motivation for potential functions.

Sometimes the worst-case running time of an operation does not accurately capture the
worst-case running time of a sequence of operations.

The idea of amortization is that we will charge induhvidual operations with the average cost
for all operations in the sequence.

So, if a sequence of 100 operations requires 1000 units of time, we’ll say each operation has
an amortized cost of 10 (even if one of them takes 901 units and the rest take unit time).

2.2 Classic Example

Incrementing an n-bit binary number.

e 0110011110011 14+1=
e 01100111101000
o (4 flips)
How many bit flips in the worst case? Best case?

Can be all n, can be just 1.



2.3 Increment Code

bit *
increment (bit *x)
{
int 1 = n-1;
while (1 >= 0 && bit[i] == 1) {
bit[i] = 0;
i--;
ks
if (14 >= 0)
bit[i] = 1;

return bit;

2.4 Counting Flips

Number of flips for incrementing all 7-bit numbers. (Number is on z axis, number of flips

on y.) Can see the worst case, but it’s rare.
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2.5 Sequence of Flips

Total flips for incrementing, in sequence, all 5-bit numbers.
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Note: Total number of flips for incrementing 0 to = never goes above 2z + 1.
When does it equal 22 + 17

When z is a power of 2. You get that big kick at the end as a bunch of ones turn to
zeros.

2.6 Potential Function

We’ve been analyzing individual while loops with potential functions. This time, we’ll ana-
lyze the entire “increment” operation.

Let = be the current value of the counter. Let ®(z) be a potential function that returns the
number of “on” bits in z.

Let’s say each bit flip costs one unit.

The worst-case cost of increment number ¢ is ¢; < n. We’'ll define the amortized cost to be

¢; = 2. That is, we’ll pretend that each increment costs 2, even when it’s really n (or even
if it’s 1).

2.7 It Works!
We need to show that the fundamental inequality of potential functions holds:
ét + (I)(l’t_1) — q)(CL’t) 2 Ct.

(E't + q)(xt—l) — @([Et)
= 2 + (I)(l't_1) — q)(l't)
> 2+ number of trailing ones in z;_; minus 1

= 1 4 number of trailing ones in z;_;

Ct



Note that the potential function measures the amount of work that went into building the
data structure.

3 ANALYSIS OF SPLAY TREES

3.1 Splay Operations

Recall that inserts, deletes, and finds in a splay tree all consist of some number of splay
operations (moving a node to the root) and a constant amount of pointer diddling.

We will show that splay operations have O(logn) amortized time and it will follow that a
sequence of n inserts and deletes on an initially empty tree takes O(logn) per operation.
Like a balanced tree, but not!

3.2 Analysis Setup

Here’s the setup for the analysis. First, define the size of a node x to be the number of nodes
in the subtree rooted at =z.

e A unit of work is a rotation.

e A splay at some node = up to the root r is the operation, and its amortized cost is

3(log s(r) — log s(x)) + 1.
e The potential function for a tree T is ®(T') = 3 7 log(s(z)).

We need to show that the operation of splaying a node = to the root satisfies the potential
function inequality. We’ll do this one case at a time.

3.3 Case Setup

Let s;_1 and s; be the size functions just before and after the step. Let y be the parent of x
and z be the parent of y (if it exists).

We’ll define the amortized cost to be 3(log s;(x) — log s;—1(x)) + 1 for Zig and 3(log s:(z) —
log s;—1(x)) for the other cases. The amortized cost for a sequence of h steps splaying = up
the tree, therefore, is

Z_: 3(log s¢(x) — log s¢—1(x)) 4+ 3(log sp(x) — log sp—1(x)) + 1 = 3(log sp () — log so(x)) + 1.

t=1

This is O(logn). Why?
so(x) >0, sp(z) =n.

This means that our amortized cost for each complete splay is O(logn), even if we start
deep in the tree. The intuition is that, the only way we could make the tree that deep in
the first place is to have performed operations that increase the potential substantially. So.
the average still works out.



3.4 Zig Case

We need to show that ¢ + ®(D;_1) — ®(Dy) > ¢
Here, we’ll take é; = 3(log s¢(x) — log s;—1(x)) + 1. The actual cost ¢; = 1. Why?

Zig is one rotation.

&+ O(Dy_y) — (D)
= 3(log se(x) — log sua(2) + 1+ 3 log(se-1(w)) — Y log(sq(w))

= 3logsi(z) —3log si—1(z) + 1 + log(si—1(x)) + log(si—1(y)) — log(s¢(z)) — log(s¢(y))
= 2logsi(z) — 2logsii(2) + 1+ log(si1(y)) — log(se(y))
2(log s¢(z) —log si—1(x)) + 1
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First step: Only = and y change sizes. Next step: s;(y) < s;—1(y). Finally, s;(z) >

Si—1().

3.5 Zig-Zig Case

We're splaying x. with y and z as the immediate parents.
We need to show that ¢ + ®(D;_1) — ®(Dy) > ¢
Here, we’ll take ¢ = 3(log s¢(x) — log s;—1(x)). The actual cost ¢; = 2. Why?

Zig-zig is two rotations.

&+ ®(Dos) — B(Dy)
3(log s¢(x) — log s¢—1(x)) + Z log(si—1(w)) — Z log(s¢(w))

3log si(z) — 3log si—1(z) + log(si-1(x)) + log(s:-1(y)) + log(s:-1(2)) — log(s:(w)) — log(s:(y)) — log(:
2log si(x) — log si—1(x) — log(s:(z))
2.

AVARY

First step: Only z, y, and z change sizes. Next step: s;(z) = s;-1(2) and s;(x) >
s¢(y) and s:1(y) > si-1(x).

The last step here is sort of tricky.
e Claim: 2log si(x) — log s;—1(x) — log s(z) > 2.

o Let n = s4(x).



e Note that if a + b= n, then —loga —logb > —2logn + 2, and this is attained at n/2
(this isn’t hard to show with calculus).

e Note that s;(z) + s¢—1(z) = n. So,

2log s¢(x) — log si—1(x) — log s¢(2)
> 2logn —2logn + 2
= 2.

Zig-zag case a little different, but same result.

3.6 Entire Splay

Repeating this analysis for each pair of rotations as we go up. plus the final single rotation
if needed, we get a total amortized cost of 3(logn — log so(x)) + 1 = O(logn), where the
potential function inequality is satisfied (string them all together).

Therefore, a splay operation in a tree of size n has an amortized cost of O(logn). So, a
sequence of k splays will cost O(klogn).
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