# Shortest Paths (15)

## 1 MST WRAP UP

#### 1.1 Review

Given an undirected weighted graph, find a set of edges so that all nodes are connected (spanning tree) and the total edge weight is minimized.

Kruskal's algorithm works as follows:

- Sort the list of edges.
- Mark each node with a different color.
- Set up a mapping from color to a list of nodes.
- Initialize the count of nodes in each color to 1.
- Repeat V-1 times:
  - Take the smallest weight edge, discard if both endpoints have the same color.
  - If not, figure out which color has the smaller number of nodes, and recolor them
    to the color of the other list.

## 1.2 Correctness Analysis

We showed that the "greedy grow lemma" tells us that we can always add the smallest weight edge that *doesn't* make a cycle and we'll end up with an MST.

## 1.3 Running Time Analysis

Informal potential function analysis:

• All the work is in relabeling nodes. How many times can a node u be relabeled? In particular, if u is in a set of size k, how many times could it have been relabeled?

Each time it is relabeled, it joins a set at least twice as big as its old set. Thus, if u is in a set of size k, it can only have been relabeled  $\log_2 k$  times!

• The final set size is |V|, so how many times can a node be relabeled?  $\log_2(|V|)$ .

• Thus,  $\Theta(|V| \log |V|)$  time for all calls to Join, since all |V| nodes end up in sets of size |V|. This is dominated by the time to sort, so no further improvements to Join and Connected will help!

Total: SORT plus JOIN is  $O(|E| \log |E|) = O(|E| \log |V|)$ .

### 2 SHORTEST PATH PROBLEM

### 2.1 Route Finding

A number of companies on the web make their money by advertising on cites that produce driving directions for any two points in the US.

Simple version of the problem: map is a weighted directed graph G = (V, E), w.

Nodes are places and intersections, edges are roads, weights are driving times (factoring in distance, road size, expected traffic).

## 2.2 Single-Source Shortest-Path Problem

Given a source node s and a destination t, we want to find the shortest (minimum weight) path from s to t.

En route, we will find the shortest path to all nodes  $u \in V$ .

Solution is a sequence of nodes  $v_1, \ldots, v_l$  such that  $v_1 = s$ ,  $v_l = t$ , and  $\sum_{i=1}^{l-1} w((v_i, v_{i+1}))$  is minimized.

Definition:  $\delta(u, v)$  is the length of the shortest path from u to v. So, we're looking for a path from s to t whose length is  $\delta(s, t)$ .

Example graph...

#### 2.3 Variations

Some simple variations:

• How find *any* path from s to t?

Depth-first search ought to do it!

• How find shortest path if w(u) = 1 for all  $u \in V$ ?

Breadth-first search... try short paths before long ones.

• How find shortest path if G is acyclic?

Like the "makespan" algorithm on the homework.

More complex variations that we'd look at if we had time:

- All-pairs shortest path: How can you compute shortest paths for all pairs s, t in less time than it takes for |V| single-source shortest-path runs?
- Stochastic shortest path: What if there is a probability that you'll leave u headed for v but end up at r instead?
- Negative edge weights: What if traversing some edges actually *improves* your driving time?

### 2.4 Some Properties of Shortest Paths

Here's an example s to t shortest path in the example graph...

• What can we say about the length of any shortest path to a node u on the path from s to t ( $\delta(s,u)$ )?

All subpaths along the shortest path are themselves shortest paths.

• What can we say about the length of any shortest path to nodes v not on the path from s to t ( $\delta(s,v)$ )?

Length of path from s to v plus the path from v to t is no shorter than the shortest path from s to t:  $\delta(s,v)+\delta(v,t)\geq \delta(s,t)$ . This is also known as the triangle inequality.

• What can we say about the sequence  $\delta(s, v_i)$  along a shortest path  $v_1, \ldots, v_l$ ?

Increasing.

## 2.5 Optimal Substructure Property

Because a shortest path is made up of other shortest paths (how many on a path of length n?), we say that the shortest-path problem exhibits the *optimal substructure property*.

$$n(n-1)/2$$
.

How would you prove it?

If there is a shortcut, it would reduce the overall path length.

Although it might seem backwardsly useful, we actually depend on this property quite a bit when finding shortest paths.

#### 2.6 Shortest Path Tree

The optimal substructure property can be used to prove the following interesting property of the solution to single-source shortest-path problems.

We can always arrange the solution in a tree, so the shortest path to v involves following a shortest path to u and then taking the edge (u, v). The set of such edges forms a shortest path tree.

Example...

Proof?

Like the MST proof, we can take any set of shortest paths and make them into a tree without increasing the overall length of any path. Induction on path length.

### 3 DIJKSTRA'S ALGORITHM

#### 3.1 Idea

We will list out all the nodes of G in order of their distance from s. This will insure that we won't miss any short cuts as we go.

 $\bullet$  Consider shortest edge out of s (to v). No other path to v can be shorter. Why? Moreover, v is a closest node to s. Why?

Edge weights are non-negative, so it would have to pass through a one-step away node and then additional weight will be added to get back to v. Going to v directly is no longer.

- Therefore, we can include (s, v) in the shortest-path tree.
- Mark v with its distance from s, w((s,v)), and now look for the next closest node. Which will it be?
- Basically, keep a set of "inside" and "outside" nodes and move the outside nodes inside one at a time in order of their distance.

## 3.2 Bookkeeping

How can we keep track of which nodes are the closest?

- Keep an array d to hold distances: d[v] is the best known distance to node v.
- When a node is added to the tree, see if any new shortcuts have been discovered, thus shortening the best known distance to some node v.
- What data structure ought to hold this kind of information?

### 3.3 Initialization and Improvement

```
\begin{array}{ll} \text{Initialize-Single-Source}(G,s) \\ 1 & \textbf{for each } v \in V[G] \\ 2 & \textbf{do } d[v] \leftarrow \infty \\ 3 & \pi[v] \leftarrow \text{NIL} \\ 4 & d[s] \leftarrow 0 \\ \\ \text{Relax}(u,v,w) \\ 1 & \textbf{if } d[u] + w(u,v) < d[v] \\ 2 & \textbf{then } d[v] \leftarrow d[u] + w(u,v) \\ 3 & \pi[v] \leftarrow u \\ \end{array}
```

### 3.4 Algorithm

```
DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S \leftarrow \emptyset
3 Q \leftarrow V[G]
4 while Q \neq \emptyset
5 do u \leftarrow \text{Extract-Min}(Q)
6 S \leftarrow S \cup \{u\}
7 for each v \in Adj[u]
8 do Relax(u, v, w)
```

Example run...

### 3.5 Connection to Prim's

Nearly identical to Prim's MST algorithm:

```
RELAX-PRIM(u, v, w)

1 if d[v] > w(u, v)

2 then d[v] \leftarrow w(u, v)

3 \pi[v] \leftarrow u
```

In Dijkstra, distance to "outside" node is the total distance from source instead of just the minimum length edge from the current tree.

#### 3.6 Correctness

Some facts:

• Algorithm maintains the invariant that for all "outside" nodes v, d[v] is the length of the shortest path from s to v using only inside nodes. Invariant maintained by looking at all possible extensions of "inside" paths.

- The distances of nodes along a shortest path from s to t is monotonically non-decreasing, so it is reasonable to grow the path in increasing order of distance.
- Let  $u_i$  be the *i*th node brought to the inside. The sequence  $d[u_i]$  is non decreasing: Dijkstra's sorts the nodes by distance.
- For any given node u, d[u] starts at infinity and decreases until u is brought inside.
- Induction: When u is brought inside,  $d[u] = \delta(s, u)$ .

### 3.7 Running Time

Just like Prim's:

- Priority queue contains |V| entries, so queue operations take  $O(\log |V|)$ .
- Call Relax at most once per edge, each might require an adjustment to the priority queue:  $O(|E|\log |V|)$ .
- Call Extract-Min once per vertex:  $O(|V|\log |V|)$ .
- Total:  $O(|E|\log |V|)$ , assuming all edges reachable from source.
- Can also implement the priority queue with a simple array and get  $O(|V|^2)$  (better for dense graphs).

### $4 A^*$

#### 4.1 Obvious Waste

In a general, asymptotic, worst-case setting, there are no algorithms that are known to find a shortest (s,t) path any faster than computing the entire shortest-path tree.

Nonetheless, there are obvious inefficiencies in this approach.

Consider route finding in 2d in which t is on one side of s, and all other nodes are closer and in the other direction. Dijkstra's "looks where the light is good" in some sense.

*Note*: This is not a typical "algorithms" topic, but it's pretty cool, pretty useful, and an AI thing.

#### 4.2 Admissible Heuristic

If path lengths can be easily lower bounded, we can use this information to guide the search. An admissible heuristic h is a function that gives a guaranteed lower bound on the distance from any node u to the destination t. Natural example: straight-line distance (at maximum speed) to t.

### 4.3 Important Properties

For the nice formal properties to hold, we need h to satisfy a few properties:

- Admissibility: For any node  $u, 0 \le h(u) \le \delta(u, t)$ .
- Monotonicity (triangle inequality): For any pair of nodes u and v,  $h(u) \leq h(v) + w((u,v))$ .
- Destination: h(t) = 0 (follows from admissibility).

Here are some useful definitions.

- $f^*(u) = \delta(s, u) + \delta(u, t)$ : shortest diverted path.
- $f(u) = h(u) + \delta(u, t)$ : estimated distance.

#### 4.4 Observations

Useful observations:

- $f^*(u)$  is minimized for u on a shortest (s,t) path, with  $f^*(u) = \delta(s,t)$ .
- For all  $u, f(u) \le f^*(u)$  because of admissibility.
- $f(t) = \delta(s, t)$ .
- Consider two consecutive nodes u and v along a shortest path (to anywhere). Claim:  $f(u) \leq f(v)$ . Proof: By monotonicity,  $h(u) \leq h(v) + w((u,v))$ . Because u and v are on a shortest path,  $w((u,v)) = \delta(s,v) \delta(s,u)$ . Combining, we get  $\delta(s,u) + h(u) \leq h(v) + \delta(s,v)$  or  $f(u) \leq f(v)$ .

### 4.5 New Algorithm

Change EXTRACT-MIN in Dijkstra's to pick out the node u with the smallest value of d[u] + h(u). [Note, at the smallest value of d[u] + h(u),  $f(u) = \delta(s, u) + h(u) = d[u] + h(u)$  because of monotonicity.]

Idea:

- The quantity f(u) is an underestimate of the total distance from s to t through u (true distance from s to u plus an underestimate of the distance from u to t).
- By focusing the search on the nodes with the smallest value of f(u), we are likely to be doing work along the true shortest path.

This is called  $A^*$ .

### 4.6 Basic Concepts

Search proceeds in rings of increasing f cost. Note that if h is a perfect heuristic, the source and destination have the same f cost.

- A\* brings inside all nodes with  $f(v) \le f(t) = \delta(s, t)$ .
- A\* may bring inside some nodes with  $f(v) = \delta(s,t)$  before bringing inside t and terminating.

Correctness: Solution found is true shortest path because all subsequent contours have higher f cost, and therefore, higher distance.

### 4.7 Running Time and Heuristic Quality

Higher quality heuristic implies no more work.

- We say a heuristic h' is higher quality than another h if  $h'(v) \leq h(v)$  for all v (and admissibility and monotonicty hold).
- Therefore, the f values under h' will be smaller than those under h.
- Recall that A\* brings inside all nodes with f values below that of the destination.
- Therefore, running with h' will bring inside no more nodes than running with h.

### 4.8 Running Time

The lowest quality heuristic is h(v) = 0. What algorithm is this?

Dijkstra's.

Therefore, we get at least  $O(|V|^2)$  or  $O(|E|\log |V|)$ , maybe better.

## 4.9 Generating Heuristics

Some useful ways to think about good heuristics:

- If  $h_1$  and  $h_2$  are admissible heuristics, then  $h(v) = \max(h_1(v), h_2(v))$  is admissible (and of no lesser quality).
- "Relaxations" often produce good heuristics: if cost is a function of some constraints on nodes, then constraint-free distance is admissible (Manhattan distance in 8 puzzle).

## 4.10 Varying Quality

What happens as we vary heuristic quality?

- $\bullet$  As a thought experiment, let's consider a grid of points and s and t on the same line.
- $\bullet$  Let all nodes be completely connected and w be Euclidean distance.
- Let  $h_c(v) = c\delta(v, t)$ , so c = 0 is Dijkstra and c = 1 is the perfect heuristic.
- Which nodes are searched as a function of c? Try 0, 1, 1/2.