Dynamic Programming: LCS (19)

1 REVIEW

1.1 Maximum Probability Segmentation

Recall how we developed an algorithm for this.

- We began with a recursive formulation: The best way to break up a sequence is the best combination of a first word with the best way to break up the remainder of the sequence.
- Then, we noticed that implementing this directly recursively would result in lots of wasted work.
- So, we decided to "cache" the results of our work and compute answers in reverse order to fill in the table. That way, whenever we need the solution to a subproblem, it's already in our table.
- Actually, a lot like solving problems on a DAG (since you can write the computational dependencies as a graph and work in reverse topological order).
- Running time was $O(n^2)$, since each of the n table entries takes O(n) to fill in.

2 LONGEST COMMON SUBSEQUENCE

2.1 Problem

Given a text file and a variation of the file, identify lines that have been deleted, inserted, or changed.

I use this all the time in the form of the UNIX diff command.

- source code control: efficiently store multiple versions of a large program by keeping changes as "diffs."
- collaborative authoring: focus attention on new edits.
- software distribution: send updates as "diffs" instead of resending entire tree.
- debugging: compare the output of a newly compiled program to the correct output (can be used for grading also).

2.2 Formal Definition

A sequence is a list $X = \langle x_1, x_2, \dots, x_m \rangle$ (e.g., $\langle A, B, C, B, D, A, B \rangle$).

A subsequence of X is an ordered sublist of X (e.g., $\langle B, C, D, B \rangle$, but not $\langle D, C, B \rangle$).

A common subsequence of two sequences X and $Y = \langle B, D, C, A, B \rangle$ is a subsequence of both of them.

The LCS, or *longest common subsequence* of X and Y is, well, their longest possible common subsequence. What is it?

We'll also use X_i to mean the *i*-element prefix of X. So $X_m = X$ if X is length m.

2.3 Algorithmic Ideas

How would you solve this? Hint, it will involve filling in a table!

- Think of "optimal substructure" property (like when we talked about paths).
- Think of a recursive solution.

2.4 Optimal Substructure Theorem

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{m-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

2.5 Recursive Formula

Let c[i, j] be the length of the LCS of X_i and Y_j (prefixes).

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise.} \end{cases}$$

2.6 Algorithm

LCS-LENGTH(X, Y)

- 1 $m \leftarrow length[X]$
- $2 \quad n \leftarrow length[Y]$
- 3 for $i \leftarrow 1$ to m
- 4 **do** $c[i, 0] \leftarrow 0$
- 5 for $j \leftarrow 1$ to n
- 6 **do** $c[0,j] \leftarrow 0$
- 7 for $i \leftarrow 1$ to m

```
do for j \leftarrow 1 to n
 8
 9
                       do if x_i = y_i
                               then c[i,j] \leftarrow c[i-1,j-1] + 1
b[i,j] \leftarrow ","
10
11
                                else if c[i-1, j] > c[i, j-1]
12
                                            then c[i,j] \leftarrow c[i-1,j]
13
                                                     b[i,j] \leftarrow "\uparrow"
14
                                            else c[i,j] \leftarrow c[i,j-1]
b[i,j] \leftarrow \leftarrow
15
16
17
      return c and b
```

2.7 General Running-Time Analysis for Dynamic Programming

Nearly any DP algorithm can be analyzed by multiplying the size of the table by the time it takes to fill in a single cell of the table.

- segmentation: n table entries, O(n) time to fill in, $O(n^2)$ total.
- LCS: nm table entries, O(1) time to fill in, O(nm) total.

2.8 Beam Search

In practice, it doesn't make sense to fill in the whole table. Instead, consider a limited window (size k) at any one time. Not optimal, since might be more than k added or deleted lines. Works well in practice, and brings running time down to O(nk).

2.9 Memoization

Can make the recursive formulation work, as long as you don't let yourself compute the answer to the same question repeatedly.

- Create a hash table for each subroutine associating inputs to answers.
- No side effects, so same input means same output.
- Each time we compute an output, store it in the hash table.
- Before we try to compute a new answer, see if that one's already in the hash table (and return right away if it is).
- Get same worst-case bounds (often better best case).
- (Can do the same with DFS to identify "reachable" subproblems.)

Turn an exponential algorithm into a quadratic one!

3 OTHER PROBLEMS

3.1 Other Problems

If time, we could do optimal matrix chain. Or stochastic shortest paths.