Algorithms
 Professor John Reif

ALG 1.0

Introduction:

Efficient Algorithms For The Problem Of Computing Fibonocci Numbers

Main Reading Selection: CLR, Chapter 1

Auxillary Reading Selection:
BB Chapter 1 and Section 4.7

GOAL

devise algorithms to solve problems on Sun machines, e.g. Sun-2

assume each step (a mult, add, or control branch)
takes $1 \mu \mathrm{sec}=10 \mathrm{sec}$ on 16 bit words

Fibonocci Sequence
$0,1,1,2,3,5,8,13, \ldots$.

Recursive Definition

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}}= & \text { if } \mathrm{n} \leq 1 \text { then } \mathrm{n} \\
& \text { else } F_{n-1}+F_{n-2}
\end{aligned}
$$

Problem

Compute F $1,000,000,000$
fast on a SUN-2

Can show as $n \rightarrow \infty$

$$
F_{n} \sim \frac{\phi^{n}-(-\phi)^{-n}}{\sqrt{5}}
$$

$$
\begin{gathered}
\text { golden ratio } \\
\phi=\frac{1+\sqrt{5}}{2}=1.62 \ldots
\end{gathered}
$$

$$
\text { So } F_{n} \sim .45 \cdot 2^{.7 n} \text { is }
$$

.7n bit number
grows exponentially!

Obvious Method

$$
F_{n}=\left\{\begin{array}{l}
n \text { if } n \leq 1 \\
F_{n-1}+F_{n-2} \quad \text { if } n>1
\end{array}\right.
$$

costs at least $\frac{n}{2}$ adds of

$$
\frac{.7 n}{2}=.35 n \text { bit numbers }
$$

Total Cost $\geq\left(\frac{\mathrm{n}}{2}\right.$ adds $)\left(\frac{.35 \mathrm{n} \text { bits }}{16 \text { bits }}\right)$

$$
\begin{gathered}
\geq . .01 \mathrm{n}^{2} \text { steps } \\
\geq 10^{16} \mu \mathrm{sec} \text { for } \mathrm{n}=10^{9} \\
=10^{10} \mathrm{sec} \\
\sim \quad 317 \text { years ! }
\end{gathered}
$$

WANTED!
 An Efficient Algorithm for F_{n}

Weapons:

--Special Properties of computational problem
$=$ combinatorics (in this case)

THEOREM:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

proof by Induction

Basis Step
Holds by definition for $\mathrm{n}=1$
Inductive Step
Assume holds for some n>0

$$
\text { fix } \quad M=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

"Powering Trick"

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n+1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
F_{n+1}+F_{n} & F_{n}+F_{n-1} \\
F_{n+1} & F_{n}
\end{array}\right) \\
& =\left(\begin{array}{ll}
F_{n+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right)
\end{aligned}
$$

To compute M
when n is a power of 2
for $\mathrm{i}=1$ to $\quad{ }_{\mathrm{L}} \log \mathrm{n}_{\mathrm{J}}$ do
$M^{2^{i}}=\left(M^{2^{i-1}}\right) \times\left(M^{2^{i-1}}\right)$
gives $\mathbf{M}, \mathbf{M}^{2}, M^{2^{2}}, \ldots M^{2^{L^{\circ}}}$

In general case decompose $\quad \mathrm{n}=2^{\mathrm{j} 1}+2^{\mathrm{j} 2}+\ldots+2^{\mathrm{jk}}$ as sum of powers of 2

New Algorithm $\mathrm{M}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$
(1) compute $\mathbf{M}, \mathbf{M}^{2,}, \ldots, \mathbf{M}^{2 \operatorname{logn}}$ by power method
(2) if $n=2^{j_{1}}+2^{j_{2}}+\ldots+2^{j_{k}}$

$$
\text { then } M^{n}=\prod_{i=1, \ldots, k} M^{2^{j} i_{i}}
$$

(3) output $\mathrm{F}_{\mathrm{n}}=$ upper right of M^{n}

```
cost
    = 2 log n matrix products
        on symmetric matrices
    of size 2x2
```


Each matrix product costs 6 integer mults

Total Cost

$=12(\log n)$ integer mults
≥ 360 for $\mathrm{n}=10^{9}$ integer mults !

```
Recall F n ~ . }45
    so F n
```

is $\mathrm{m}=.7 \mathrm{n}$ bit integer
New Method
to compute \mathbf{F}_{n}
requires
multiplying m bit number
${ }^{\text {But }}$ Grammar School Method
for Mult takes $\quad m^{2}$ bool ops
$=\frac{\mathrm{m}^{2}}{16}$ steps on Sun-2
$\sim 10^{16}$ steps for $\mathbf{n}=10^{9}$
$\sim 10^{16} \mu \mathrm{sec}$
$\sim 10^{10}$ seconds
~ 317 years!

Fast Multiplication

"3 Mult Trick"

of m bit integers a, b by

$a \cdot b=a_{L} b_{L} 2^{2 k}+\left(a_{L} b_{R}+a_{R} b_{L}\right) 2^{k}+a_{R} b_{R}$
seems to take 4 mults , but....

$$
\begin{aligned}
\text { (1) } \mathrm{x} & =\mathrm{a}_{\mathrm{L}} \cdot \mathrm{~b}_{\mathrm{L}} \\
\text { (2) } \mathrm{y} & =\mathrm{a}_{\mathrm{R}} \cdot \mathrm{~b}_{\mathrm{R}} \\
\text { (3) } \mathrm{z} & =\left(\mathrm{a}_{\mathrm{L}}+\mathrm{a}_{\mathrm{R}}\right) \cdot\left(\mathrm{b}_{\mathrm{L}}+\mathrm{b}_{\mathrm{R}}\right)-(\mathrm{x}+\mathrm{y}) \\
& =\mathbf{a}_{\mathrm{L}} \mathrm{~b}_{\mathrm{R}}+\mathrm{a}_{\mathrm{R}} \mathrm{~b}_{\mathrm{L}}
\end{aligned}
$$

Requires only 3 mults
on $\frac{m}{2}$-bit integers \quad and 6 adds on m-bits
$a \cdot b=a_{L} b_{L} 2^{2 k}+\left(a_{L} b_{R}+a_{R} b_{L}\right) 2^{k}+a_{R} b_{R}$
$=x 2^{2 k}+z \cdot 2^{k}+y$
on \underline{m} - bit integers and $\mathbf{6}$ adds on m-bits

$$
\begin{gathered}
a \cdot b=a_{L} b_{L} 2^{2 k}+\left(a_{L} b_{R}+a_{R} b_{L}\right) 2^{k}+a_{R} b_{R} \\
=x 2^{2 k}+z \cdot 2^{k}+y
\end{gathered}
$$

Recursive Mult Algorithm

Schonhage - Strassen Integer Multiplication Algorithm

(See AHU-Data page 270-274)
$10 m \log m \cdot \log \log m \quad$ bit ops
~. $7 \cdot 10^{12}$ bit ops for $\mathrm{m}=.7 \cdot 10^{9}$
$\sim 4.3 \cdot 10^{10}$ steps on Sun-2
~ $4.3 \cdot 10^{4}$ sec. on Sun-2
~ 3 days on Sun-2

This is feasible to Compute!

New Algorithm

computed $\mathbf{F}_{\mathbf{n}}$ for $\mathbf{n}=10$
using $360=12 \log n$ integer mults each taking $\mathbf{\sim} 3$ days on Sun-2

> Total Time to compute $\mathbf{F}_{\mathbf{n}}$
> ~ 3 years on single Sun-2 with $1 \mu \mathrm{sec} / \mathrm{step}$
> (or 6 days on 5 nano sec/step Cray)

> | How did we get |
| :---: |
| sequential speed-up? |

(1) new trick
a $2 \log \mathrm{n}$ mult algorithm (rather than n adds)
(2) old trick
use known efficient algorithms for integer multiplication (rather than Grammar School mult)
(3) Also used careful analysis of efficiency of algorithms to compare methods

Problem (to be pondered later...)

How fast can $10{ }^{9}$ integers be sorted on a Sun-2?

What algorithms would be used?

