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Algorithms
Professor John Reif

A LG 1.0

Introduction:

Efficient Algorithms For The
Problem Of Computing

Fibonocci Numbers

Main Reading Selection:
CLR, Chapter 1

Auxillary Reading Selection:
BB Chapter 1 and Section 4.7
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devise  algorithms to  
 solve problems on Sun  

machines, e.g. Sun-2

GOAL

assume  each step
(a mult, add, or control branch)

takes 1 mmmm sec = 10
-6

sec
on 16 bit words
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Tricky algorithm
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0, 1, 1, 2, 3, 5, 8, 13, ........

Fibonocci Sequence

Fn = if  n  < 1 then  n  
 

else  Fn-1  + Fn-2

Recursive Definition

_

Compute F
1,000,000,000

fast on  a SUN-2

Problem
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Can show as n ÆÆÆÆ    ••••

F
n
          ~~~~                

5555
ffffn        -  (-ffff)

-n

golden ratio

ffff     =  2
1 + 5

  =  1. 62 . . .

So Fn ~ .45 . 2 .7n  is  
 

.7n bit number

grows exponentially!
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Obvious Method

 

Fn =
n if n £ 1

Fn-1 + Fn-2 if n > 1
Ï
Ì
Ó

costs  at least  n   
 

adds of
2  

 

2
. 7n

  =      .35n bit numbers

Total Cost ≥≥≥≥    ( 2
n

  adds)( 16 bits
. 35n bits)

≥≥≥≥ .01 n 2   steps
≥≥≥≥ 10 16 mmmm sec for n = 109

= 10 10  sec
~ 317 years !
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An Efficient Algorithm
for F n

WANTED!

--Special Properties of
computational problem

= combinatorics (in this case)

Weapons:
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THEOREM:

1 1
1 0

proof

 
 

by Induction

Basis Step

 
 

Holds by definition for n=1

Inductive Step
Assume holds for some n>0
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Then :
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1 0

  M = ( 1 1
1 0)fix

"Powering Trick"

To compute M
n

when n is a power of 2

for  i=1 to  
 ÎÎÎÎ            

log n 
˚̊̊̊    
 
 

do

M
2

i

 = (M
2

i-1)  x (M
2

i-1)

  M,   M
2
,  M

2
2

, . . .  M
2

ÎÎÎÎlogn
˚̊̊̊

gives
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In general case  
 

decompose    n =  2 j1  + 2 j2  + ... + 2 jk

as sum of powers of 2

example

 23 = 24  + 2 +21  +2 0

= 16 + 4 + 2 + 1

= 10111 2

  M
n
 =     ’’’’

i=1, . . . , k
     
M

2
jcompute

2

i
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New Algorithm

M = ( 1 1
1 0)

(1) compute M, M 2, ,..., M2 ÎÎÎÎlogn ˚̊̊̊

by power method

(2) if  n = 2 j1 + 2 j2  + ... + 2 jk

             

(3) output Fn = upper right
of M n

 M
n
 =    ’’’’

i=1, . . . , k
     M

2
j
i

then
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cost
= 2 log n matrix products

on symmetric matrices
of size 2x2

Each matrix product  costs
6 integer mults

= 12(log n) integer mults

≥≥≥≥     360 for n = 10 9 integer mults !

Total Cost
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Recall F n ~  .45  2
.7n

so F n

 
is  m = .7n bit integer

New Method 

to compute Fn

requires

 
 

 
 

multiplying m bit number

But   Grammar School Method
for Mult takes m 2 bool ops

 
  ~  10 16  steps for n = 10 9

~  10 16  mmmm sec
~  10 10 seconds
~  317 years!

= 16
m

2

  s teps  on Sun-2
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Fast Multiplication

of m bit integers a,b by

"Divide and Conquer"
a = a L◊◊◊◊2

k + a R

b = b L◊◊◊◊    2
k + b R

where  k  =   m
ÎÎÎÎ 2 ˚̊̊̊

a ◊◊◊◊b = aL bL    22k
 + (a L b R + a R bL) 2

k + a R
bR

a

b

L

R

a

b L

R

seems to take 4 mults , but....
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"3 Mult Trick"

(1) x = a L ◊◊◊◊    b L

(2) y = a R ◊◊◊◊ b R

(3) z =  (a L + a R) ◊◊◊◊ (b L + b R) - (x+y)
=  a

L b R + a R b L

Requires only 3 mults
on m  - bit integers

2
and 6 adds on m-bits

a ◊◊◊◊b = aL bL 22k  + (a L b R + a R bL)2k + a R
bR

= x  2
2k  + z ◊◊◊◊ 2 k + y
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Recursive Mult Algorithm

Cost Cm bit ops C1 =1
Cm 3C m

2

+ 6m for m>1

log m

i=0

3
2

i
SSSS ( )

log m
3
2( )

<

<

<
log

2
3

1.4

~ bit ops

6m

6m

6m

~

~

10
13

bit ops if m = .7 10
9

10
13

16
steps of SUN-2

~ .05 years on SUN-2

<

6m
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         Schonhage - Strassen
Integer Multiplication Algorithm 

(See AHU-Data page 270-274)

10m  log m  ◊◊◊◊     log log m  bit ops

~ .7 ◊◊◊◊10 12   bit ops   for
m=.7 ◊◊◊◊10 9

~ 4.3 ◊◊◊◊10 10   steps on  Sun-2

~  4.3 ◊◊◊◊10 4 sec. on Sun-2

~  3 days on Sun-2

This is feasible to Compute!
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New Algorithm

computed F n   for  n =10 9

using 360 = 12 log n integer mults
each taking ~ 3 days on Sun-2

 to compute  F n

~ 3 years on single Sun-2
 
   

       

with 1 mmmm sec/step
(or 6 days on 5 nano sec/step  

 Cray)

Total Time

2 0

    How did we get 
sequential speed-up?

(1) 
a 2 log n mult algorithm
(rather than n adds)

(2) 
 
      

use known efficient algorithms
for integer multiplication

 
     

(rather than Grammar School mult)

(3)  Also used 
of efficiency of algorithms  

 to compare methods

new trick

old trick

careful analysis
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(to be pondered later...)

How fast can 10 9  integers
be sorted on a Sun-2?

Problem

fifififi   

What algorithms would
������be used?


