Algorithms Professor John Reif

ALG 1.0

Introduction:

Efficient Algorithms For The Problem Of Computing Fibonocci Numbers

> Main Reading Selection: CLR, Chapter 1

Auxillary Reading Selection: BB Chapter 1 and Section 4.7

GOAL

devise algorithms to solve problems on Sun machines, e.g. Sun-2

assume each step (a mult, add, or control branch) takes 1 μ sec = 10^{-6} sec on 16 bit words

Fibonocci Sequence

Can show as
$$n \to \infty$$

 $F_n \sim \frac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}$

golden ratio

$$\phi = \frac{1 + \sqrt{5}}{2} = 1.62 \dots$$

Obvious Method
$$F_n = \begin{cases} n & \text{if } n \le 1 \\ F_{n-1} + F_{n-2} & \text{if } n > 1 \end{cases}$$

costs at least $\frac{n}{2}$ adds of
 $\frac{.7n}{2} = .35n \text{ bit numbers}$

Total Cost
$$\geq \left(\frac{n}{2} \text{ adds}\right) \left(\frac{.35 \text{ n bits}}{16 \text{ bits}}\right)$$

≥ .01 n² steps
≥ 10¹⁶
$$\mu$$
 sec for n = 10⁹
= 10¹⁰ sec
~ 317 years !

THEOREM:

$$\begin{pmatrix} 1 \ 1 \ 1 \ 0 \end{pmatrix}^{n} = \begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix}$$

Then:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n+1} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} F_{n+1} + F_n & F_n + F_{n-1} \\ F_{n+1} & F_n \end{pmatrix}$$

$$= \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix}$$

fix
$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

"Powering Trick"

To compute Mⁿ when n is a power of 2 for i=1 to $\lfloor \log n \rfloor$ do $M^{2^{i}} = (M^{2^{i-1}}) \times (M^{2^{i-1}})$ gives M, M², M^{2²},... M^{2^{logn}}

In general case
decompose
$$n = 2^{j_1} + 2^{j_2} + ... + 2^{j_k}$$

as sum of powers of 2

cost

= 2 log n matrix products on symmetric matrices of size 2x2

Each matrix product costs 6 integer mults

Total Cost

- = 12(log n) integer mults
- \geq 360 for n = 10⁹ integer mults !

.7n Recall F $_n \sim .45$ 2 so F_n is m = .7n bit integer **New Method** to compute **F**_n requires multiplying m bit number But **Grammar School Method** for Mult takes m^2 bool ops $=\frac{m}{16}$ steps on Sun-2 ~ 10^{16} steps for n = 10^{9} ~ 10^{16} µ sec ~ 10^{10} seconds ~ 317 years!

"3 Mult Trick"

(1)
$$\mathbf{x} = \mathbf{a} \cdot \mathbf{b}_{\mathrm{L}}$$

(2) $\mathbf{y} = \mathbf{a} \cdot \mathbf{b}_{\mathrm{R}}$
(3) $\mathbf{z} = (\mathbf{a} \cdot \mathbf{b}_{\mathrm{R}} + \mathbf{a}_{\mathrm{R}}) \cdot (\mathbf{b}_{\mathrm{L}} + \mathbf{b}_{\mathrm{R}}) - (\mathbf{x} + \mathbf{y})$
 $= \mathbf{a}_{\mathrm{L}} \mathbf{b}_{\mathrm{R}} + \mathbf{a}_{\mathrm{R}} \mathbf{b}_{\mathrm{L}}$

Requires only 3 mults on <u>m</u> - bit integers and 6 adds on m-bits 2 $a \cdot b = a_L b_L 2^{2k} + (a_L b_R + a_R b_L) 2^k + a_R b_R$ $= x 2^{2k} + z \cdot 2^k + y$

New Algorithm

computed F_n for $n = 10^{-9}$ using 360 = 12 log n integer mults each taking ~ 3 days on Sun-2

How did we get sequential speed-up?

(1) new trick

a 2 log n mult algorithm (rather than n adds)

- (2) old trick use known efficient algorithms for integer multiplication (rather than Grammar School mult)
- (3) Also used careful analysis of efficiency of algorithms to compare methods

How fast can 10 ⁹ integers be sorted on a Sun-2?

Problem

 \Rightarrow

What algorithms would be used?