## Algorithms

Professor John Reif

## ALG 1.1 <br> Models of Computation:

(a) Random Access Machines (RAMs)
(b) Straight Line Programs and Circuits
(c) Decision Trees
(d) Machines That Make Random Choices

Main Reading Selection:
CLR, Chapter 1
Auxillary Reading Selections:
AHU-Design, Chapter 1
BB, Sections 1.1-1.5, 1.8
AHU-Data, Chapter 1


RANDOM ACCESS MACHINE

## RAM assumptions

(1) each register holds an integer
(2) program can't modify itself
(3) memory instructions involve simple arithmetic
a) addition, subtraction
b) multiplication, division
and control statements (goto, if-then, etc.)

Written in "Pidgin Algol"

$$
\text { examples: }\left\{\begin{array}{l}
\mathrm{r} \leftarrow \text { constant } \\
\mathrm{r}_{3} \leftarrow \mathrm{r}_{1} \text { op } \mathrm{r}_{2} \\
\quad o p \in\{+,-, \times, \div\} \\
\text { goto label } \\
\text { if } \mathrm{r}=0 \text { then goto } \mathrm{L} \\
\text { read }(\mathrm{r}) \\
\\
\text { write }(\mathrm{r})
\end{array}\right.
$$



## Complexity Measures of Algorithms

Time ${ }_{A}(X)=$ time cost of Algorithm $A$, input $X$
Space $A_{A}(\mathbf{X})=$ space ${ }^{\prime \prime}$
11
worst case time complexity
average case
complexity

$$
E\left(T_{A}(n)\right)=\Sigma \text { Time }_{A}(X) \operatorname{Prob}(X)
$$

for random inputs
worst case
space complexity
\{ $\mathbf{x}:|\mathrm{x}|=\mathbf{n}\}$

$$
\{x:|x|=n\}
$$

average case
complexity
for random inputs

$$
T_{A}(n)=\max _{\{x:|x|=n\}}(\text { Time } \quad A(X))
$$

$$
S_{A}(n)=\max (\text { Space } \quad(x))
$$

$$
E\left(S_{A}(n)\right)=\sum_{\{x:|x|=n\}} \text { Space }_{A}(x) \operatorname{Prob}(x)
$$



## LOGORITHMIC COST CRITERIA

time $=\mathbf{L}(\mathbf{i})$ units per RAM instruction on integer size i
space $=\mathbf{L}(\mathbf{i})$ units per RAM register

example

$$
\begin{aligned}
& \mathrm{Z} \leftarrow 2 \\
& \text { for } \mathrm{k}=1 \text { to } \mathrm{n}^{\mathrm{n}} \text { do } \mathrm{Z} \leftarrow \mathrm{Z} \cdot \mathrm{Z} \\
& \begin{array}{l}
\text { output } \mathrm{Z}=2^{\mathrm{n}}
\end{array} \\
& \begin{array}{l}
\text { uniform } \\
\text { unime cost }=\mathbf{n}
\end{array}
\end{aligned}
$$

Varieties of
Computing Machine
Models

## RAMs <br> straight line programs circuits <br> bit vectors <br> lisp machines

Turing Machines

## Straight Line Programs

note : this is only possible if
we can eliminate all branching
and all indirect addressing
$\Rightarrow$ for each $\mathrm{n}>0$, get a distinct program $\Pi_{n}$

```
Example
```


## Given polynomial

```
\[
\begin{aligned}
& p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \\
& \text { with constant coefficients } a_{0}, a_{1}, \ldots, a_{n}
\end{aligned}
\]
```

```
Horner's Rule
for
Polynomial
Evaluation
RA M
program
in 2n steps
input X
Y}\leftarrow\mp@subsup{\mathbf{a}}{\mathbf{n}}{
for i = n-1 by -1 to 0 do
output
```



(DAG) graph model for straight line programs


## Boolean Circuits <br> (for VLSI design)

input

restrictions:
(1) all memory registers have
(2) use only logical operations
value 0 or 1 $\wedge, \vee, \oplus, ~ ᄀ$
"and" "or" "parity" "not"

## Vector Machines

```
(modeling CONVEX computer)
logical operations }\quad\vee,^,\oplus
applied to vector elements
```

memory locations hold boolean vectors


## Decision Trees



Tosort $n$ keys
any decision tree must have n! output leaves
( n ! = \# permutations of n keys) hence height of tree is

$$
\geq \log (n!) \quad \geq c n \log n
$$

## Lisp Machines

Complexity theory for AI

'The VW of Machines'
"The Ultimate Program Language of Theory"

## Turing Machine <br> (TM)


write only output tape

$$
\begin{array}{ll}
\text { Invented by Turing } & \text { (a Cambridge logician) } \\
\text { Built by British for WWII crytography! } \\
\mathrm{T}(\mathrm{n})=\text { time cost } & =\text { max steps of TM } \\
\mathrm{S}(\mathrm{n})= & \text { space cost } \\
& \text { max cells written by TM } \\
& \text { on memory tapes }
\end{array}
$$

## Reductions <br> between <br> TM and RAM <br> models

(1) Given TM time cost $T(n)$ then $\exists$ equivalent $\quad$ Ram (obvious)

(2) Given RAM time cost $\quad \boldsymbol{T}(\boldsymbol{n})$ with logarithmic cost then $\exists$ equivalent $T M$ with time cost $\mathbf{c}^{\prime} \mathbf{T}(\mathbf{n}){ }^{2}$


## Extensions of RAMS:

Reasonable
(0) Modifiable Program
(1) Random Choices
(2) Non-uniformity

Not Reasonable
(3) Non-deterministic Choices
do arithmetic by Grammer School Method


A Randomized Computation



## Surprising Result <br> [Adelman]

Given any polynomial time
randomized algorithm with 1 side error,

```
a a non-uniform deterministic
```

algorithm with polynomial time
and polynomial advice!
( tricky proof )
Gives way of derandomizing a randomized algorithm.

## Nondeterministic Machines

allow "nondeterministic choice" branches

## $\boldsymbol{N P}=$ languages accepted by <br> polynomial time nondeterministic <br> TM machines.

- includes many hard problems:
(1) Traveling Salesman Problem
(2) Propositional Satisfiability
(3) Integer Programming


## $P$ = languages accepted by

 polynomial time deterministic
## TM machines

probably
no
$\mathbf{P}=\mathbf{N P}$
?

## Another Surprising Result

Levin

```
If P=NP but we don't know the proof
(i.e., the polynomial time algorithm
for NP
    find an optimal algorithm to
        find the solution of any
    solvable NP search problem,
        in polynomial time!
```

    proof depends on assumption
    that there is a finite length program
    for NP search problems, running in poly time)

## Conclusion

```
(1) There are many possible
    machine models
(2) Most (but not Nondeterministic)
    are "Constructable" - so might
    be used if we have efficient
    algorithms to execute on
    machines.
(3) New machine models can help us invent new algorithms, and vice versa!
```

