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Algorithms
Professor John Reif

ALG 1.1
Models of Computation:

(a)  Random Access Machines (RAMs)
(b)  Straight Line Programs and Circuits
(c)  Decision Trees
(d)  Machines That Make Random Choices

Auxillary Reading Selections:  
  AHU-Design, Chapter 1

BB, Sections 1.1-1.5, 1.8  
 AHU-Data, Chapter 1
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Main Reading Selection:
CLR, Chapter 1
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RAM assumptions

(1)

(2)

(3)

each register holds an integer

program can't modify itself

memory instructions involve simple arithmetic

a)  addition, subtraction

b)  multiplication, division

and control statements (goto, if-then, etc.)

  

examples:  

r ¨̈ constant

r3 ¨̈ r1 op r2

op ŒŒ +, -, ¥¥,∏∏{ }
goto label

if r = 0 then goto L

read r( )
write r( )

ÊÊ

ËË

ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

Written in  "Pidgin Algol"
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input X
size n = |X| fifififi    fifififi    outputAlgorithm A

Complexity Measures of Algorithms
Time A(X)  = time cost of Algorithm A, input X

Space A(X)  = space   "                "              "

  

worst case 
time complexity

TA(n) =max (Time A(X))
 
  

{x:|x|=n}

average case 
complexity 

   E(T A(n)) = SSSS    Time A(X)Prob(X) 
for random inputs  

    
{x:|x|=n}

worst case 
space complexity

  SA(n) =max(Space A(x))
 
   

{x:|x|=n}

average case 
complexity 

 E(S A(n)) = SSSS    Space A(x)Prob(x)

for random inputs
 
   

{x:|x|=n}

Note:  "time" and "space" depend on machine
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{ t i me=# RA M i ns t ruct i ons
             

s pace=# RA M memory  regi s t ers

UNIFORM COST CRITERIA

{  

LOGORITHMIC COST CRITERIA

  

time = L(i) units per RAM instruction
on integer size i

space = L(i) units per RAM register size i

              

 
          where  L( i )  = { ÎÎÎÎ l og |i |   i     ππππ    0

1 i = 0

example Z ¨̈̈̈ 2
for k = 1  to  n  do   Z ¨̈̈̈    Z ◊◊◊◊  Z

output Z = 2
2 n

 

 
uniform time cost =  n

logarithmic time cost >>  2n

ÊÊ
ËËÁÁ

ÎÎÎÎ
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Varieties of 
Computing Machine 
Models

 

 

RAMs

straight line programs

circuits

bit vectors

lisp machines

ÊÊ

ËË

ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

..

.

Turing Machines
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Straight Line Programs

fix n = input size

unroll  each iteration loop
until result is 

loop-free program PPPPn

note : this is only possible if  
 we can eliminate all branching

and all indirect addressing

idea

fifififi     for e ach n > 0 ,
ge t a dis tinct program  PPPP

n
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Example Given polynomial

with constant coefficients a 0 ,a 1 ,...,a n

p( x )  = a
n
 x

n
 + a

n - 1
 x

n - 1
 + . . .  + a

1
 x  + a

0

RA M  

    
 

program
i n 2 n s t eps

{
 i np ut   X
 Y ¨̈̈̈ a

n 
 f or   i  = n- 1  b y   - 1  t o  0   d o

 Y ¨̈̈̈       ( Y ◊◊◊◊     X)  + a
i out p ut   Y

Horner's Rule 
for 
Polynomial 
Evaluation

n=1 n=2 n=3PPPP 1111     :::: PPPP
2
 : PPPP

3
 :

        

    

      

        
        

     
Y ¨̈̈̈  Y ◊◊◊◊      X

    

            
     +

Y ¨̈̈̈  Y  ◊◊◊◊         X
      

Y ¨̈̈̈  Y  ◊◊◊◊         X
     

Y  ̈̈̈̈ a1◊ X

Y +Y  Y  

¨̈̈̈

¨̈̈̈

◊ X

a

a 0

Y  ̈̈̈̈

¨̈̈̈ a

a
2

Y  Y +

Y  

Y  ̈̈̈̈ ¨̈̈̈

◊

1

a
0

Y  Y  
Y  ̈̈̈̈

a

a
a3 X

¨̈̈̈ 2

Y  +Y  

Y  + 1

0

+
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1-1
correspondence

PPPP
3

         

      a

Y  ¨̈̈̈  Y   ◊◊◊◊         X

     

Y  ¨̈̈̈  Y   ◊◊◊◊         X

     

inputs

3 2 1 0

output

(DAG) graph model for straight line programs

Y

YY

Y

¨̈̈̈

¨̈̈̈

¨̈̈̈

¨̈̈̈

a

a

a ◊◊◊◊
3

X

+

+

+

YY

Y 1

0

2

fifififififififi

X a a a a

◊◊◊◊

◊◊◊◊

◊◊◊◊

+

+

+

CircuitsStraight Line
Programs

1 0

Boolean Circuits 
(for VLSI design)

input

x
1

x
2

ŸŸŸŸ ⁄⁄⁄⁄

output

¬

≈

restrictions:

(1) all memory registers have value 0 or 1

(2) use only  logical operations

ŸŸŸŸ,,,,    ⁄⁄⁄⁄,,,,        ≈≈≈≈,,,,    ¬
"and"   "or"   "parity"   "not"
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Vector Machines

(modeling CONVEX computer)

logical operations  
 
⁄⁄⁄⁄,,,,    ŸŸŸŸ,,,,    ≈≈≈≈,,,,    ¬

applied to vector  elements

 1  0  1  0...
memory locations hold boolean vectors

 0

may also allow vector shift operations

graph G

 1

 3

 4

 1  2  3  4

1 0  1  0  0

2  0  0  1  1

3  0  0  0  1

4  1  0  0  0

 2

Example 

1 2

Decision Trees

input   a,b,c

Y

Y

Y

N

Y

 N

 Y

 N N

 N

a < b ?

b < c ? a < c ?

output
a,b,c a < c ? output

b,a,c b < c ?

output
a,c,b

output
c,a,b

output
b,c,a

output
c,b,a

Example

Sorting

To sort n keys

 any decision tree must have 
 n! output leaves

(n! = # permutations of n keys)
hence height of tree is

>  log  (n!)  >  c n log n2
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Lisp Machines

input tape
Heap registers

operations r
i

         ¨̈̈̈        CAR ( r )

r
i

         ¨̈̈̈            CDR (r
j
)

CAR CDR

CELLCAR (r
i
) ¨̈̈̈            r  

program

x
1

x
2

... x
n

r
0

r
1

r
2

Y
1

Y
2 Y

n
...

output tape

i

j

¨̈̈̈r  jCDR (r )

CDR (r)

Complexity theory for AI

Some problems are 
faster on LISP machinei
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"The VW of Machines"

"The Ultimate Program Language of Theory"
Turing Machine   (TM)

...
read only

Finite  State
Control

input tape

read/write
memory tapes..

.

write only
output tape

...
1

Y
2

X 1 X 2 X
n

Y

Invented by Turing (a Cambridge logician)

Built by British for WWII crytography!

T(n) = 

S(n) =

time cost

space cost

= max steps of TM

= max cells written by TM
     on memory tapes
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Reductions
between 

TM and RAM
 models

(1) Given TM time cost T(n) then

$$$$    equivalent Ram (obvious)

c  T(n) if uniform cost
c  T(n) (log n) if logarithmic cost

time 
cost

(2) Given  RAM time cost  T(n) with logarithmic cost
then $$$$        equivalent TM with time cost  c'  T(n) 2

proof idea
registers

ºººº#

r
0

r
1

r
2

r
k

read
write
memory

# # #

do arithmetic by Grammer School Method

1 6

Extensions of RAMS:

(0) Modifiable Program

(1) Random Choices

(2) Non-uniformity

Reasonable

Not Reasonable

(3) Non-deterministic Choices
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RASP Machine

same as RAM but allow

program to change itself

Proof idea
Let RAM use memory registers

to store
modifiable program of 

RASP (due to Von 
Neumann)
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Randomized Machines

 Extend RAM 
instructions to 
include

r ¨̈̈̈ RANDOM(k)

 

gives a random k 
bit number

Let A R(x)  denote randomized algorithm
with input x, random  choices R

        

=
 

ÂÂÂÂ
"""" R

 
 

Expected Time input X

Time (X) Time (X) Prob (R)

  Expected Time Complexity

T(n) = max  Time (x)

{x|n = |x|}
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P

R

O

B

A

B

I

L

I

T

Y

T (n )

T I M E  T(n)

2 0

..
.

..
.

..
.

..
.

..
.

..
.

output output
    1

output
   00

��A Randomized Computation

1/2

1/2
1/2

1/2

1/2

1/2
1/2

1/2
1/2

Y

N

1/2
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(1) If machine outputs value v with prob > 1
  2then v is considered its output.

(2) machine accepts input X if outputs 1 with prob> 1
  2

(3) has 1-sided error  if when not accepting 1 
  outputs only 0.

2 2

Non-uniformity

for each input size n,
allow the program a distinct, finite,

"advice tape " to read

1 0 011 ºººº

note

if advice tape length 2n

can solve any boolean output

problem with n boolean inputs
(obvious).
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Surprising Result
[Adelman]

Given any polynomial time
randomized algorithm with 1 side error,

$$$$  a non-uniform deterministic
algorithm with polynomial time

and polynomial advice!

( tricky proof )
Gives way of derandomizing  a randomized algorithm.

2 4

Nondeterministic
Machines

allow "nondeterministic choice" b r a n c h e s

accept x reject x

nondeterministic
choice

if any  sequence of choices succeed
to accept x, then computation accep t s .
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- includes many hard problems:

(1) Traveling Salesman Problem

(2) Propositional Satisfiability

(3) Integer Programming

NP = languages accepted by

 
  

polynomial  time nondeterministic

 
   

   TM machines.

P = languages accepted by

polynomial time deterministic

TM machines

not known
probably

no

P = NP
   ?
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Another Surprising Result
Levin

If P=NP but we don't know the proof 
 
 

 (i.e., the polynomial time algorithm 
for NP

find an optimal algorithm to
find the solution of any

solvable NP search problem,
in polynomial time!

proof depends on assumption
that there is a finite length  program

for NP search problems, running in poly time)
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    Conclusion

(1)  There are many possible 
 machine models

(2)  Most (but not  Nondeterministic)
 are "Constructable"  

 
- so might

 be used if we have efficient
 algorithms to execute on
machines.

(3)  New machine models can help
 us  invent new algorithms , and
 vice versa!


