
1

Algorithms
Professor John Reif

ALG 1.3
 Deterministic Selection

and Sorting:
(a) Selection Algorithms and Lower

 Bounds
(b) Sorting Algorithms and Lower

 Bounds

Main Reading Selections:
CLR, Chapters 7, 9, 10

Auxillary Reading Selections:
AHU-Design, Chapters 2 and 3
AHU-Data, Chapter 8
BB, Sections 4.4, 4.6 and 10.1

2

Problem P size n

fifififi divide into subproblems size n
1
,...,n

k
solve these and "glue" together

 solutions

≠≠≠≠
time to combine solutions

T(n) = ÂÂÂÂ
i=1

k

 T(n
i
) + g(n)

Examples:
1st lecture's mult M(n) = 3 M (ÈÈÈÈ

 2
 n ˘̆̆̆) + qqqq(n)

fast fourier transform F(n) = 2 F(ÈÈÈÈ

2222
n

 ˘̆̆̆) + qqqq(n)

binary search B(n) = B (ÈÈÈÈ

 2
 n

 ˘̆̆̆) + qqqq((((1111))))

merge sorting S (n) = 2 ◊◊◊◊ S (ÈÈÈÈ

2222
n

 ˘̆̆̆) + qqqq(n)

3

Examples

Selection, and Sorting on
 Decision Tree Model

input a,b,c

a<b?

b<c?

a<c?

a,b,c

a,c,b

a<c?

b,a,c b<c?

c<a<b
b,c,a c,b,a

Y

Y

Y
Y

Y

N

N

N

N

N

root

4

Time = (# comparisons
 on longest path)

Binary tree

 with L Leaves
facts: (1) has ==== L-1 internal nodes

(2) max height ≥≥≥≥ ÈÈÈÈ log L ˘̆̆̆

5

Merging

2 lists with total of n keys
input X1 < X2 < ... < Xk

and
Y1 < Y2 < ... < Yn-k

output
ordered merge of two key lists

goal
 provably asymptotically optimal

algorithm in
Decision Tree Model

allows simple proofs of lower bounds

time = # comparisons so easy
 to bound time costs

use this Model because it

6

Algorithm Insert
input (X

1
 < X

2
 < ... < X

k
) , (Y 1)

Case k=n-1

Algorithm : Binary Search

 by Divide-and-Conquer

[1] Compare Y1 with X
ÈÈÈÈ

2222
k ˘̆̆̆

[2] i f Y1 > X
ÈÈÈÈ

2
k ˘̆̆̆

 insert Y
1
 into

(X
ÈÈÈÈ

2

k ˘̆̆̆ + 1

 < . . . < Xk)
else Y1 ££££ X

ÈÈÈÈ

2
k ˘̆̆̆

 and insert Y1 into

(X1 < . . . < X
 ÈÈÈÈ

2
k ˘̆̆̆)

7

Total Comparison Cost:

££££ ÈÈÈÈ log (k+1) ˘̆̆̆ ==== ÈÈÈÈ log (n) ˘̆̆̆

Since a binary tree with n=k+1 leaves

has depth >

ÈÈÈÈ log(n) ˘̆̆̆ ,,,, this is optimal!

8

Case: Merging equal length lists

Input (X
1
 < X

2
 < ... < X

k
)

(Y
1
 < Y

2
 < ... < Y

n- k
)

 w h e r e k =
2
n

Algorithm

[1] i ¨̈̈̈ 1, j ¨̈̈̈ 1

[2] while i ££££ k and j ££££ k do

[3] output remaining elements

Algorithm clearly uses 2k-1 = n-1 comparisons

{

i f X

i
 < Y

j
 t hen out p u t (X

i
) and s e t i ¨̈̈̈i +1

e l s e out p ut (Y
j
) and s e t j¨̈̈̈j+1

9

Lower bound:

consider case X 1 < Y1 < X2 < Y2 <...< Xk < Yk

claim:

any merge algorithm must compare

(1) X i with Y i for i=1 ,..., k
(2) Y i with X

i+1
 for j=1 ,..., k-1

(otherwise we could flip Y i < Xi with no change)
 fifififi so requires ≥≥≥≥ 2k-1 = n-1 comparisons!

10

Sorting by Divide-and-Conquer

Algorithm Merge Sort

input set S of n keys

[2] Recursively compute

[3] merge above sequences
using n-1 comparisons

[4] output merged sequence

[1] partition S into set X of ÈÈÈÈ

 2
 n

 ˘̆̆̆ keys

 and set Y of
 ÎÎÎÎ

2
n

˚̊̊̊
 keys

Merge Sort (X) = (X1 , X2 , . . . , X
ÈÈÈÈ

2
n

˘̆̆̆
)

Merge Sort (Y) = (Y1 , Y2 , . . . , Y

ÎÎÎÎ 2 ˚̊̊̊

n
)

11

Time Analysis

T(n) = T (ÈÈÈÈ

 2
 n ˘̆̆̆) + T (

ÎÎÎÎ
 2
 n

˚̊̊̊

) + n-1

T(l) = 0

fifififi T(n) = n ÈÈÈÈ log n ˘̆̆̆ - 2
ÈÈÈÈ

˘̆̆̆

 + 1

= qqqq (n log n)

log n

12

Lower Bounds on Sorting
(on decision tree model)

depth ≥≥≥≥ ÈÈÈÈ log (n!) ˘̆̆̆

n! distinct leaves

....

13

Easy Approximation (via Integration)

log(n!) = log(n) + log(n-1) + . . . + log(2) + log(1)

≥ + +Ú Ú
-

log ... logx dx x dx
n

n

1 1

2

≥ Ú log x dx
1

n
 (Since log logk x dx

k

k
 ≥

-Ú 1
)

≥ - + n n n e elog log log

Better bound
 using Sterling Approximation

n! ≥≥≥≥ 2ppppn (n)
n

(1 +
12
1

n)e

fifififi log (n!) ≥≥≥≥ n log n - n log e +
2
1

 log (2ppppn)

14

output

Selection Problems

 X1, X2 ,..., X n
and index k eeee {1,...,n}

x(k) = the k'th best

input

15

History:

Rev C.L. Dodge (Lewis Carol)
wrote article on lawn tennis
tournament in James Gazett, 1883

felt prizes unjust because:

- although winner X
 always gets lst prize

- second X (2) may not get 2nd prize

note: X

not

 declared 2nd best

left branch

Carol proposed his own (nonoptimal) tournament....

X

X

X

X
X (2)

(1)

(1)

(1)
(2)

(2)

if it is

(1)

16

Selection of the champion X (1)
- X (1) is easily determined in n-1 comparison

- X requires n-1 comparisons

proof
everyone except the champion X

must lose at least once!

..
.

. . .

X
1

X
2

X
n-1

X
n

(1)

(1)

17

Selection of the second best X(2)

using n-2 +
 ÈÈÈÈ

logn
˘̆̆̆ comparisons

[1] form a balanced binary tree
 for tournament to find X (1)
 using n-1 comparisons

Algorithm

(1)

(1)

(1)

x

x Y

Y

xY

x

(1)

log n height

18

[2] Let Y be the set of players

 knocked out by champion X(1)

 |Y| ££££
 ÈÈÈÈlogn

˘̆̆̆

[3] Play a tournament among the Y's

[4] output X (2) = champion of the Y's

 using ÈÈÈÈ logn ˘̆̆̆ -1 more comparisons

19

Lower Bounds on finding X (2)

requires ≥≥≥≥ n-2 + ÈÈÈÈlogn ˘̆̆̆ comparisons

proof

#comparison ≥≥≥≥ m 1
 + m 2

 + ...

where m i = #players who lost i or
more matches

20

Claim m 1 ≥≥≥≥ n-1, since at end we
 must know X (1) as well as X (2)

Claim m 2 ≥≥≥≥ (#who lost to X (1))-1
 since everyone (except X (2)) who

 lost to X (1) must also have
 lost one more time.

21

lemma
 (#who lost to X

(1)
)

 ≥≥≥≥

 ÈÈÈÈlogn ˘̆̆̆

 in worst case

 proof
Use oracle who "fixes" results
of games so that champion X (1)

plays ≥≥≥≥

ÈÈÈÈlogn ˘̆̆̆ matches

22

 declare
 Xi > Xj if

(a) X i previously undefeated and
 Xj lost at least once

(b) both undefeated but Xi played
 more matches

(c) otherwise, decide consistently
with previous decisions

fifififi forces path from X
(1)

to root

to have length ≥≥≥≥ ÈÈÈÈlogn ˘̆̆̆

23

Selection by Divide-and-Conquer

Algorithm Select k (X)

input set X of n keys and index k

24

 [1] if n < c o then output X (k) by sorting X
and halt

 [2] divide X into n sequences
 ÎÎÎÎ

d ˚̊̊̊

of d elements each (with < d leftover),
 and sort each sequence

 [3] let M be the medians of each of
 these sequences

 [5] let X
-

 = {x eeee X | x < m}

 let X
+

 = {x eeee X | x > m}

 [6] if |X
-

| ≥≥≥≥ k then output Select k (X
-

)

 else if n - |X +| ==== k then output m

 else output Select k-(n - |X +|) (X +)

[4] m ¨̈̈̈ Select

2
|M|

 (M)

25

largest

m

 M in sorted order

not X
-

not X
+

d

= sequencessmallest Columns

ÎÎÎÎ
 d

 n

 ˚̊̊̊

Propos ition |X
-
|, |X

+
| each ££££ n -

ÎÎÎÎ
 2

d+1

˚̊̊̊
 ◊◊◊◊

ÎÎÎÎ
 2d
 n

˚̊̊̊

 ££££
4444
3333 n

T(n) ££££ { c if n < co

 T (

ÎÎÎÎ d
 n

 ˚̊̊̊) + T (
4
3

 n) + c1n

1

26

for a sufficiently large constant

 (assuming d is constant)

If say d=5, T(n) ££££ 20c n = O(n)

c1

1

27

Lower Bounds for Selecting X (k)

input X = {x
1

 ,..., x n }, index k

Theorem Every leaf of Decision Tree has

depth ≥≥≥≥ n-1

28

proof
Fix a path p from root to leaf
The comparisons done on p define a
relation R p

Let the "key" comparison for x i be when
 x i is compared with x j where either

Let Rp

+
 = trans itive closure of Rp

Lemma If path p determines Xm = X(k)

then for all iππππm either xi Rp

+
 xm or xm Rp

+
 xi

proof Suppose xi is un related to xm by Rp

+

Then can replace xi in linear order either
before or after xm to violate xm = x(k)

(1) j=m

(2) xi Rp xj and xj Rp

+
 xm , or

(3) xj Rp xi and xm Rp

+
 xj

Fact xi has unique "key" comparison determining

either xi Rp

+
 xm or xm Rp

+
 xi

fifififi So there are n-1 "key" comparisons, each distinct!

29

 A hard to analyze sort:

 SHELLSORT

input keys 1 ,..., X nX

30

begin
j ¨̈̈̈ i - DDDD
while j>0 do

increment if x j > x j+DDDD then
 sort

begin
SWAP (x j , x j+DDDD)
j ¨̈̈̈ j - DDDD

end

else j ¨̈̈̈ 0¨
end
DDDD ¨̈̈̈ ÎÎÎÎ DDDD //// 2222 ˚̊̊̊

AHU Data Structures & Alg., pp. 290-291

(1) DDDD ¨̈̈̈
ÎÎÎÎ

 2
 n

˚̊̊̊

(2) w hile DDDD > 0 do
 for i = DDDD +1 to n do

31

1 increment sort (X k

,

X
2
n

 + k) for k=1, . . . ,
2
n

2 increment sort (X k , X
4
n

 +k
 , X

2
n

 +k
 , X

4
3

n + k)
for k=1, . . . ,

4
n

 passes of SHELLSORT:

32

increment sort (Y
1

 ,..., Y
l)

(for i = z by 1 until i>n or X i-1 < X i

do for j=1 by -1 until 1 do

if X j-1 > X j then swap (X j-1 , X j)

facts (1) if Xi , X
2p

n
 + 1

 sorted in pass p

fifififi they remain sorted in later passes

 (2) dis tance between comparisons diminish

as
2
n

 ,
4
n

 , . . . , 2p
n

 ,

 (3) The best known time bound is 0 (n
1. 5)

procedure

33

input X1 n

eeee {1 ,..., n}

[1] for j=1 ,..., n do
 initialize B[j] to be the empty list

[2] for i=1 ,..., n do
 add i to B[X i]

[3] let L = (i 1 , i 2 ,..., n) be the
 concatenation of B[1] ,..., B[n]

[4] output Xi1 ££££ Xi2

££££ ... ££££ X in

procedure RADIXSORT

, ... , X

i

34

-- Costs O(n) time on unit cost RAM

-- avoids WWWW(nlogn) lower bound on SORT
by avoiding comparisons
instead uses indexing of RAM

generalizes (in c passes) to key
domains {1 ,..., c }n

--

35

open problems in sorting

(1) Complexity of SHELLSORT

-- very good in practice
claims Sedgewick

-- Is it qqqq(n 1.5)?

(2) Complexity of variable length

-- sort on multitape TM or RAM

-- Is it WWWW(n log n)?

