Algorithms

 Professor John Reif
ALG 1.3

Deterministic Selection and Sorting:
(a) Selection Algorithms and Lower Bounds
(b) Sorting Algorithms and Lower Bounds

Main Reading Selections:
CLR, Chapters 7, 9, 10
Auxillary Reading Selections:
AHU-Design, Chapters 2 and 3
AHU-Data, Chapter 8
BB, Sections 4.4, 4.6 and 10.1

Problem P size n

\Rightarrow divide into subproblems size $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ solve these and "glue" together solutions

$$
T(n)=\sum_{i=1}^{k} T\left(n_{i}\right)+\underset{\uparrow}{g}(n)
$$

time to combine solutions

$$
\begin{aligned}
& \text { Examples: } \\
& \text { 1st lecture's mult } \\
& \mathbf{M}(\mathbf{n})=\mathbf{3 M}\left(\begin{array}{l}
\left\ulcorner{ }^{〔}{ }^{\urcorner}\right.
\end{array}\right)+\boldsymbol{\theta}(\mathbf{n}) \\
& \text { fast fourier transform } \mathbf{F}(\mathbf{n})=2 \mathrm{~F}\binom{\Gamma_{\mathbf{n}}{ }^{7}}{\frac{2}{2}}+\theta(\mathbf{n}) \\
& \text { binary search } \quad \mathbf{B}(\mathbf{n})=\mathbf{B}\binom{{ }^{\prime}{ }^{7}}{2}+\boldsymbol{\theta}(1) \\
& \text { merge sorting } \mathbf{S}(\mathbf{n})=2 \cdot \mathbf{S}\left({ }^{\Gamma_{\mathbf{n}}}{ }^{7}\right)+\theta(\mathbf{n})
\end{aligned}
$$

input a, b, c

with L Leaves
facts: (1) has $=\mathbf{L}-1$ internal nodes
(2) max height $\quad \geq^{「} \log L^{\top}$

Merging

2 lists with total of n keys
input $\quad \mathrm{X}_{1}<\mathrm{X}_{2}<\ldots<\mathrm{X}_{\mathrm{k}}$ $Y_{1}<Y_{2}<\ldots<Y_{n-k}$ output
ordered merge of two key lists

goal

provably asymptotically optimal algorithm in Decision Tree Model

use this Model because it

allows simple proofs time $=$ \# comparisons of lower bounds so easy
to bound time costs

Algorithm Insert

$$
\text { input } \quad\left(\mathrm{X}_{1}<\mathrm{X}_{2}<\ldots<\mathrm{X}_{\mathrm{k}}\right),\left(\mathrm{Y}_{1}\right)
$$

Case $k=n-1$

Algorithm : Binary Search
by Divide-and-Conquer
[1] Compare Y_{1} with $X_{\left.\Gamma \frac{k}{2}\right\rceil}$
[2] if $\mathbf{Y}_{1}>\mathbf{X}_{\Gamma_{\frac{k}{2}}}$ insert \mathbf{Y}_{1} into

else $\quad \mathrm{Y}_{1} \leq \mathrm{X}_{\Gamma_{\frac{k}{2}}}$ and insert Y_{1} into
$\left(X_{1}<\ldots<X_{\left\lceil\frac{k 7}{2}\right.}\right)$

$$
\begin{aligned}
& \text { Total Comparison Cost: } \\
& \leq^{〔} \log (\mathbf{k}+\mathbf{1})^{7}={ }^{\Gamma} \log (\mathbf{n})^{\dagger}
\end{aligned}
$$

Case: Merging equal length lists

$$
\begin{array}{ll}
\text { Input } & \left(X_{1}<X_{2}<\ldots<X_{k}\right) \\
& \left(Y_{1}<Y_{2}<\ldots<Y_{n-k}\right)
\end{array}
$$

wherek $=\frac{\mathrm{n}}{2}$
Since a binary tree with $\mathrm{n}=\mathrm{k}+1$ leaves
has depth $>{ }^{「} \log (\mathrm{n}){ }^{7}$, this is optimal!!

Algorithm

[1] $\mathrm{i} \leftarrow 1, \mathrm{j} \leftarrow 1$
[2] while $\mathrm{i} \leq \mathrm{k}$ and $\mathrm{j} \leq \mathrm{k}$ do

[3] output remaining elements

Lower bound:

consider case $\mathbf{X} \quad{ }_{1}<\mathrm{Y}_{1}<\mathbf{X}_{2}<\mathrm{Y}_{2}<\ldots<\mathrm{X}_{\mathrm{k}}<\mathrm{Y}_{\mathrm{k}}$ any merge algorithm must compare
claim:
(1) X_{i} with Y_{i} for $i=1, \ldots, k$
(2) Y_{i} with X_{i+1} for $\mathrm{j}=1, \ldots, \mathrm{k}-1$
(otherwise we could flip $\mathrm{Y}_{\mathrm{i}}<\mathrm{X}_{\mathrm{i}}$ with no change)
\Rightarrow so requires $\quad \geq 2 \mathrm{k}-1=n$ - 1 comparisons!

Sorting by Divide-and-Conquer

Algorithm Merge Sort

input set S of \mathbf{n} keys
[1] partition S into set X of $\left\lceil\frac{n}{2}\right\rceil$ keys
and set Y of $\left\lfloor\frac{n}{2}\right\rfloor$ keys
[2] Recursively compute
Merge Sort $(\mathbf{X})=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{\Gamma^{\mathbf{n}}}{ }^{\mathbf{2}}\right)$
$\operatorname{Merge} \operatorname{Sort}(\mathbf{Y})=\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \ldots, \mathbf{Y}_{\left.\frac{\mathbf{n}}{\lfloor 2\rfloor}\right)}\right.$
[3] merge above sequences
using $\mathrm{n}-1$ comparisons
[4] output merged sequence

Time Analysis

Easy Approximation

(via Integration)

```
log(n!) = log(n) + log(n-1) + . . + log(2) + log(1)
```

$\geq \int_{n-1}^{n} \log x d x+\ldots+\int_{1}^{2} \log x d x$
$\geq \int_{1}^{\mathrm{n}} \log \mathrm{xdx}\left(\right.$ Since $\left.\log k \geq \int_{k-1}^{k} \log x d x\right)$
$\geq n \log n-n \log e+\log e$

$$
\begin{aligned}
& \text { Better bound using } \quad \text { Sterling Approximation } \\
& n!\geq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{12} n\right) \\
& \Rightarrow \log (n!) \geq n \log n-n \log e+\frac{1}{2} \log (2 \pi n)
\end{aligned}
$$

History:

Rev C.L. Dodge (Lewis Carol) wrote article on lawn tennis tournament in James Gazett, 1883

felt prizes unjust because:

- although winner X
always gets Ist prize
- second X (2) may not get 2nd prize

Carol proposed his own (nonoptimal) tournament....

Selection of the champion

- $\mathbf{X}_{(1)}$ is easily determined in
n-1 comparison

proof

everyone except the champion $\mathbf{X}_{(1)}$ must lose at least once!

Selection of the second best $\mathrm{X}_{(2)}$ using $n-2+\operatorname{logn}$ comparisons

Algorithm

[1] form a balanced binary tree for tournament to find \mathbf{X} using n - 1 comparisons

Lower Bounds on finding	$\mathbf{X}_{(2)}$	
requires	$\geq n-2+{ }^{\text {「 }}$ logn	
	comparisons	

```
proof
    #comparison \geq m
    where m i = #players who lost i or
    more matches
```

Claim $m_{1} \geq n-1$, since at end we must know $\mathbf{X} \quad$ (1) as well as \mathbf{X}

Claim $\quad m_{2} \geq(\#$ who lost to $X \quad$ (1) $)$-1 since everyone (except X
(2) who lost to X (1) must also have lost one more time.

lemma
 (\#who lost to X
 (1) $) \geq\lceil\log n\rceil$ in worst case

proof

Use oracle who "fixes" results of games so that champion X plays $\geq{ }^{1} \operatorname{logn}{ }^{1}$ matches

declare

$$
X_{i}>X_{j} \text { if }
$$

(a) X_{i} previously undefeated and X_{j} lost at least once
(b) both undefeated but X_{i} played more matches
(c) otherwise, decide consistently with previous decisions
\Rightarrow forces path from X (1) to root
to have length $\geq{ }^{〔} \log { }^{7}$

Selection by Divide-and-Conquer

Algorithm
 Select ${ }_{k}(X)$

input set \mathbf{X} of \mathbf{n} keys and index k

[1] if $\mathrm{n}<\mathrm{c}_{\mathrm{o}}$ then output $\mathrm{X} \quad$ (k) by sorting X
and halt
[2] divide X into $\quad\left\lfloor_{\mathrm{n}}^{\frac{\mathrm{n}}{\mathrm{d}}}\right\rfloor$ sequences
of d elements each (with < d leftover),
and sort each sequence
[3] let \mathbf{M} be the medians of each of these sequences
[4] $\mathrm{m} \leftarrow$ Select $_{\frac{|\mathrm{M}|}{2}}(\mathrm{M})$
[5] let $X^{-}=\left\{\begin{array}{ll}x \quad \varepsilon & X \mid x<m\end{array}\right\}$
$\operatorname{let} X^{+}=\left\{\begin{array}{ll}x & \varepsilon X \mid x>m\end{array}\right\}$
[6] if $\left|X^{-}\right| \geq k$ then output Select ${ }_{k}\left(X^{-}\right)$
else if $\mathrm{n}-\left|\mathrm{X}^{+}\right|=\mathrm{k}$ then output m
else output Select ${ }_{k-\left(\mathrm{n},\left|\mathrm{X}^{+}\right|\right)}\left(\mathrm{X}^{+}\right)$

input $X=\left\{\begin{array}{llll}x & 1 & , \ldots, x & n\end{array}\right\}$, index k

Theorem
Every leaf of Decision Tree has depth $\geq \mathrm{n}-1$
proof
Fix a path p from root to leaf
The comparisons done on p define a relation R
Let $R_{p}^{+}=$transitive closure of \mathbf{R}_{p}
Lemma If path \mathbf{p} determines $\mathbf{X}_{\mathrm{m}}=\mathbf{X}_{(\mathrm{k})}$
then for all $i \neq m$ either $x_{i} R_{p}^{+} x_{m}$ or $x_{m} R_{p}^{+} \mathbf{x}_{i}$ proof \quad Suppose \mathbf{x}_{i} is un related to \mathbf{x}_{m} by $\mathrm{R}_{\mathrm{p}}^{+}$

Then can replace x_{i} in linear order either before or after x_{m} to violate $x_{m}=x_{(k)}$

Let the "key" comparison for x_{i} be when \mathbf{x}_{i} is compared with $\mathrm{x} \quad \mathrm{j}$ where either
(1) $\mathrm{j}=\mathrm{m}$
(2) $x_{i} R_{p} x_{j}$ and $x_{j} R_{p}^{+} x_{m}$, or
(3) $x_{j} \quad R_{p} \quad x_{i}$ and $x_{m} R_{p}^{+} x_{j}$

Fact x_{i} has unique 'key" comparison determining either $\mathrm{x}_{\mathrm{i}} \mathrm{R}_{\mathrm{p}}^{+} \mathrm{x}_{\mathrm{m}}$ or $\mathrm{x}_{\mathrm{m}} \mathrm{R}_{\mathrm{p}}^{+} \mathbf{x}_{\mathrm{i}}$
\Rightarrow So there are n-1 'key" comparisons, each distinct! 28


```
    (1) \(\Delta \leftarrow\left\llcorner^{\frac{n}{2}}\right.\) 」
    (2) while \(\Delta>0\) do
        for \(\mathrm{i}=\Delta+1\) to \(\mathrm{n} d o\)
begin
    \(\mathbf{j} \leftarrow \mathbf{i}-\quad \Delta\)
        while \(\mathbf{j}>\mathbf{0}\) do
        if \(\mathbf{x}_{\mathrm{j}}>\mathrm{x}_{\mathrm{j}+\Delta}\) then
        begin
                                    \(\operatorname{SWAP}\left(\mathbf{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}+\Delta}\right)\)
                                    \(\mathrm{j} \leftarrow \mathrm{j}-\Delta\)
        end
        else \(\mathbf{j} \leftarrow \mathbf{0}^{*}\)
end
\(\Delta \leftarrow\lfloor\Delta / 2\rfloor\)
```

AHU Data Structures \& Alg., pp. 290-291

passes of SHELLSORT:

1 increment sort $\left(X_{k}, X_{\frac{n}{2}+k}\right)$ for $k=1, \ldots, \frac{n}{2}$
2 increment sort $\left(X_{k}, X_{\frac{n}{4}+k}, X_{\frac{n}{2}+k}, X_{\frac{3}{4}}{ }^{n+k}\right)$
for $k=1, \ldots, \frac{n}{4}$
procedure
increment sort (\mathbf{Y}
${ }_{1}, \ldots, Y_{1}$)
for $\mathrm{i}=\mathrm{z}$ by 1 until $\mathrm{i}>\mathrm{n}$ or $\mathrm{X}_{\mathrm{i}-1}<\mathrm{X}_{\mathrm{i}}$
do for $\mathrm{j}=1$ by -1 until 1 do if $\mathbf{X}_{\mathrm{j}-1}>\mathrm{X}_{\mathrm{j}}$ then $\operatorname{swap}\left(\mathrm{X}_{\mathrm{j}-1}, \mathrm{X}_{\mathrm{j}}\right)$
facts
(1) if $X_{i}, X_{\frac{n}{\mathbf{p}^{2}+1}}$ sorted in pass p
\Rightarrow they remain sorted in later passes
(2) distance between comparisons diminish

$$
\text { as } \frac{\mathbf{n}}{2}, \frac{\mathbf{n}}{4}, \ldots, \frac{\mathbf{n}}{\mathbf{p}^{2}}, \ldots
$$

(3) The best known time bound is $0\left(\mathrm{n}^{1.5}\right)$
procedure RADIXSORT

input $\quad \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \quad \varepsilon\{1, \ldots, \mathrm{n}\}$

[1] for $\mathrm{j}=1, \ldots, \mathrm{n}$ do initialize $B[j]$ to be the empty list
[2] for $\mathrm{i}=1, \ldots, \mathrm{n}$ do add ito $\mathrm{B}\left[\mathrm{X}_{\mathrm{i}}\right]$
[3] let $L=\left(i \quad i_{2}, \ldots, i_{n}\right)$ be the concatenation of $B[1], \ldots, B[n]$
[4] output $\quad \mathbf{X}_{\mathrm{i}_{1}} \leq \mathbf{X}_{\mathrm{i}_{2}} \leq \ldots \leq \mathbf{X}_{\mathrm{i}_{\mathrm{n}}}$
-- Costs $O(n)$ time on unit cost RAM
-- avoids $\quad \Omega(\mathrm{nlogn})$ lower bound on SORT by avoiding comparisons instead uses indexing of RAM
-- generalizes (in c passes) to key domains $\left\{1, \ldots, n^{c}\right\}$
open problems in sorting
(1) Complexity of SHIELLLSORI
-- very good in practice
claims Sedgewick
-- Is it $\theta\left(\mathrm{n}^{1.5}\right)$?
(2) Complexity of variable length
-- sort on multitape TM or RAM
-- Is it $\quad \Omega(\mathrm{n} \log \mathrm{n})$?

