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Algorithms
Professor John Reif

ALG 1.3  
   Deterministic Selection

 
 

and Sorting:
(a)  Selection Algorithms and Lower  

 Bounds
(b)  Sorting Algorithms and Lower  

 Bounds

Main Reading Selections:
CLR, Chapters 7, 9, 10

Auxillary Reading Selections:
AHU-Design, Chapters 2 and 3
AHU-Data, Chapter 8
BB, Sections 4.4, 4.6 and 10.1
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Problem P   size n

fifififi        divide into subproblems  size n
1
,...,n

k
solve  these  and  "glue"  together  

 solutions

≠≠≠≠
time to combine solutions

T(n) = ÂÂÂÂ
i=1

k

 T(n
i
)   +  g(n)

Examples:
1st lecture's  mult     M(n) = 3 M (  ÈÈÈÈ

 2
 n ˘̆̆̆  )                                           + qqqq(n)

fast fourier transform   F(n) = 2 F(        ÈÈÈÈ

    

2222
n

    ˘̆̆̆        ) + qqqq(n)

binary search     B(n) = B ( ÈÈÈÈ

    2
    n

    ˘̆̆̆) + qqqq((((1111))))

merge sorting    S (n) = 2 ◊◊◊◊     S (  ÈÈÈÈ    

2222
n

    ˘̆̆̆        )  + qqqq(n)
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Examples

Selection, and Sorting on
 Decision Tree Model

input a,b,c

a<b?

b<c?

a<c?

a,b,c

a,c,b

a<c?

b,a,c b<c?

c<a<b
b,c,a c,b,a

Y

Y

Y
Y

Y

N

N

N

N

N

root
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Time  = ( # comparisons
 on longest path)

Binary tree

 with L Leaves
facts: (1) has ====  L-1 internal nodes

(2) max height ≥≥≥≥        ÈÈÈÈ    log L ˘̆̆̆
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Merging  

2 lists with total of n keys
input X1 < X2 < ... < Xk

and
Y1 < Y2 < ... < Yn-k

output
ordered merge of two key lists

goal 
 provably asymptotically optimal

algorithm in 
Decision Tree Model

allows simple proofs  of lower bounds

time = # comparisons  so easy
  to bound time costs

use this Model because it

6

Algorithm Insert
input (X

1
 < X

2
 < ... < X

k
) , (Y 1 )

Case k=n-1

Algorithm : Binary Search

 by Divide-and-Conquer

[1] Compare Y1  with X
ÈÈÈÈ

2222
k     ˘̆̆̆

  

[2]  i f Y1  > X
ÈÈÈÈ

2
k ˘̆̆̆

  insert   Y
1
 into

( X 
ÈÈÈÈ

 
2
    
k ˘̆̆̆        +  1

   < . . .  <  Xk)
else  Y1  ££££        X

ÈÈÈÈ

2
k ˘̆̆̆

 and insert  Y1  into

( X1   < . . .  <  X
    ÈÈÈÈ

 
2    
k ˘̆̆̆)
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Total Comparison Cost:

 
 

££££        ÈÈÈÈ log (k+1) ˘̆̆̆        ====        ÈÈÈÈ log (n) ˘̆̆̆

    
Since a binary tree with n=k+1 leaves

has depth >
 

ÈÈÈÈ log(n) ˘̆̆̆    ,,,,        this is optimal!
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Case: Merging equal length lists

Input (X
1
 < X

2
 < ... < X

k
)

(Y
1
 < Y

2
 < ... < Y

n- k
)  

 w h e r e  k  =  
2
n

Algorithm

[1] i ¨̈̈̈    1,  j ¨̈̈̈    1

[2] while  i ££££    k  and j ££££    k  do

[3] output  remaining elements

Algorithm clearly uses 2k-1 = n-1 comparisons

{
 
i f   X

i
 < Y

j
  t hen out p u t  ( X

i
)  and s e t  i ¨̈̈̈i +1

e l s e  out p ut   ( Y
j
)  and s e t  j¨̈̈̈j+1



9

Lower bound:

consider case X 1 < Y1 < X2 < Y2 <...< Xk < Yk

claim:  

any merge algorithm must compare

(1) X i with Y i  for i=1 ,..., k
(2) Y i with X

i+1
 for j=1 ,..., k-1

(otherwise we could flip   Y i < Xi with no change)
  fifififi    so requires  ≥≥≥≥  2k-1 = n-1 comparisons!
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Sorting by Divide-and-Conquer

Algorithm    Merge Sort

input set S of n keys

[2] Recursively  compute

[3] merge  above sequences
using  n-1  comparisons

[4] output  merged sequence

[1] partition  S into set X of  ÈÈÈÈ

 2
 n

 ˘̆̆̆  keys

   and set  Y  of 
    ÎÎÎÎ
 
2
n

 
˚̊̊̊
  keys

Merge Sort (X) = (X1 ,  X2 , . . . ,  X
ÈÈÈÈ

2
n

˘̆̆̆
 )

Merge Sort (Y) = (Y1 ,  Y2 , . . . ,  Y

ÎÎÎÎ    2 ˚̊̊̊

n
)
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Time Analysis

     

T(n) = T (  ÈÈÈÈ

 2
 n ˘̆̆̆ )  + T (  

ÎÎÎÎ
 2
 n

 
˚̊̊̊

   )  + n-1

T(l) = 0

fifififi        T(n) = n  ÈÈÈÈ    log n ˘̆̆̆  - 2
ÈÈÈÈ

      
˘̆̆̆

  +  1

= qqqq    (n log n)

log n
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Lower Bounds on Sorting
(on decision tree model)

depth ≥≥≥≥    ÈÈÈÈ    log (n!) ˘̆̆̆

n!  distinct  leaves

....
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Easy Approximation (via Integration)

log(n!) = log(n) + log(n-1) + . . . + log(2) + log(1)

≥ + +Ú Ú     
-

log ... logx dx x dx
n

n

1 1

2

≥ Ú log x dx
1

n
  (Since log logk x dx

k

k
   ≥

-Ú 1
)

≥ - +      n n n e elog log log

Better bound
 using Sterling Approximation

n! ≥≥≥≥ 2ppppn ( n)
n

(1 +
12
1

n)e

fifififi    log (n!) ≥≥≥≥     n log n - n log e + 
2
1

 log (2ppppn)
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output

Selection Problems

 X1, X2 ,..., X n
and index k eeee  {1,...,n}

x(k)  = the k'th best

input
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History:

Rev C.L. Dodge (Lewis Carol)
wrote article on lawn tennis 
tournament in James Gazett, 1883

felt prizes unjust  because:

-  although winner X
 always gets lst prize

- second X (2)  may not  get 2nd prize

note:  X

 

not

 declared 2nd best
 
 

left branch

Carol proposed his own (nonoptimal) tournament....

X

X

X

X
X (2)

(1)

(1)

(1)
(2)

(2)

if it is

(1)
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Selection of the champion   X (1)
- X (1)   is easily determined in   n-1 comparison

- X     requires  n-1 comparisons

proof
everyone except the champion X

must lose at least once!

..
.

. . .

X
1

X
2

X
n-1

X
n

(1)

(1)
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Selection of the second best X(2)

using n-2 +  
 ÈÈÈÈ

logn 
˘̆̆̆     comparisons

[1] form a balanced binary tree
 for tournament to find X (1)
 using n-1 comparisons

Algorithm

(1)

(1)

(1)

x

x Y

Y

xY

x

(1)

log n height
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[2] Let Y be the set of players

   knocked out by champion  X(1)

 
 

 |Y| ££££ 
 ÈÈÈÈlogn

˘̆̆̆ 

 

[3] Play a tournament among the Y's

[4] output   X (2)  = champion of the Y's

 using  ÈÈÈÈ  logn ˘̆̆̆  -1 more comparisons
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Lower Bounds on finding  X (2)
  
requires ≥≥≥≥        n-2 +  ÈÈÈÈlogn ˘̆̆̆    comparisons

proof

#comparison  ≥≥≥≥  m 1
 + m 2

 + ...

where m i  = #players who lost i or
more matches

20

Claim m 1  ≥≥≥≥ n-1,  since at end we   
    must know X (1)  as well as X (2)

Claim m 2  ≥≥≥≥ (#who lost to X (1) )-1
    since everyone (except X (2) ) who

    lost to X (1)  must also have
    lost one more time.
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lemma
  (#who lost to X

(1)
)

 
 ≥≥≥≥

 
 ÈÈÈÈlogn ˘̆̆̆

          in worst case

 proof 
Use oracle who "fixes" results
of games so that champion X (1)

plays  ≥≥≥≥

 
 

ÈÈÈÈlogn ˘̆̆̆ matches
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 declare
 Xi  > Xj if

(a) X i  previously undefeated and
 Xj  lost at least once

(b) both undefeated but Xi played
 more matches

(c) otherwise, decide consistently 
with previous decisions

fifififi forces path from X
(1) 

to root

to have length  ≥≥≥≥     ÈÈÈÈlogn ˘̆̆̆
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Selection by Divide-and-Conquer

Algorithm Select k (X)

input   set X of n keys and index k

24

 [1] if  n < c o then  output X (k) by sorting X                                                 
and halt

 [2] divide X into    n    sequences 
                           ÎÎÎÎ    

    
d ˚̊̊̊                                                                

    
        

of d elements each (with < d leftover),
  and sort  each sequence

 [3]  let M be the medians  of each of  
        these sequences

 

 [5] let X
-

 = {x eeee X | x < m}

   let X
+

 = {x eeee X | x > m}

 [6] if |X
-

| ≥≥≥≥ k then output  Select k (X
-

)

    else if n - |X +| ==== k then output  m

       else output   Select k-(n -  |X +|)  (X +)

[4]  m    ¨̈̈̈ Select

2
|M|

 (M)
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largest

m

 M in sorted order

not X
-

not X
+

d

= sequencessmallest Columns

ÎÎÎÎ
    d

    n

    ˚̊̊̊

Propos ition  |X
-
|,  |X

+
| each ££££    n - 

ÎÎÎÎ
 2

d+1
 

˚̊̊̊
  ◊◊◊◊         

ÎÎÎÎ
    2d
 n

    
˚̊̊̊

        ££££        
4444
3333    n

T(n) ££££    {  c if n < co

 
 T (  

ÎÎÎÎ     d
    n

    ˚̊̊̊)   +  T (  
4
3

 n)  + c1n

1
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for a sufficiently large constant 

 (assuming d is constant)

If say d=5,      T(n)  ££££  20c n  =  O(n)

c1

1
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Lower Bounds for Selecting X (k)

input    X =  {x
1

 ,..., x n },  index k

Theorem   Every leaf of Decision Tree has

depth  ≥≥≥≥   n-1

28

proof  
Fix a path p from root to leaf
The comparisons done on p define a 
relation R p

Let the "key" comparison  for x i be when
   x i is compared with x j where either

Let  Rp

+
  =  trans itive closure  of Rp

Lemma    If path p determines  Xm = X(k)

then for all iππππm either xi Rp

+
 xm  or  xm Rp

+
 xi

proof   Suppose xi is un related to xm by Rp

+

Then can replace xi in linear order either
before or after xm to violate xm = x(k)

(1) j=m

(2) xi  Rp  xj  and  xj  Rp

+
  xm ,  or

(3) xj  Rp  xi  and  xm  Rp

+
 xj

Fact   xi has unique "key" comparison determining

either xi  Rp

+
  xm or xm  Rp

+
 xi

fifififi    So there are n-1 "key" comparisons,  each distinct!
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 A hard to analyze sort:

 SHELLSORT

input keys 1 ,..., X nX

30

begin
j ¨̈̈̈ i - DDDD
while j>0  do

increment if  x j  > x j+DDDD   then
     sort

begin
SWAP (x j , x j+DDDD)
j ¨̈̈̈ j - DDDD

end
 
  

else  j ¨̈̈̈ 0¨
end
DDDD    ¨̈̈̈    ÎÎÎÎ    DDDD    ////    2222    ˚̊̊̊

AHU  Data Structures & Alg., pp. 290-291

(1)  DDDD        ¨̈̈̈        
ÎÎÎÎ

 2
 n

 
˚̊̊̊

       

(2)  w hile  DDDD    > 0  do
     for  i = DDDD    +1  to n do
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1 increment sort (X k

 

,

 

X
2
n

 + k)  for k=1, . . . ,  
2
n

2 increment sort ( X k ,  X
4
n

 +k
 ,  X

2
n

 +k
 ,  X

4
3

n + k)
for   k=1, . . . ,  

4
n

 passes of  SHELLSORT:
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increment sort (Y
1

 ,..., Y
l )

 
       

 

(   for  i = z by   1 until  i>n  or X i-1 < X i

do for  j=1  by  -1  until 1 do

if  X j-1 > X j  then   swap (X j-1 ,  X j)

facts   (1) if Xi ,  X
2p

n
 + 1

 sorted in pass p

fifififi     they remain sorted in later passes

       (2) dis tance between comparisons  diminish

as  
2
n

 ,  
4
n

 , . . . ,   2p
n

 ,  . . . .

       (3) The best known time bound is  0 (n
1. 5)

procedure
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input  X1 n  
 

eeee  {1 ,..., n}

[1] for   j=1 ,..., n  do
 initialize B[j] to be the empty list

[2] for   i=1 ,..., n do
 add i to B[X i]

[3] let L = (i 1 , i 2 ,..., n ) be the  
 concatenation of B[1] ,..., B[n]

[4] output  Xi1  ££££ Xi2  
 

££££    ...  ££££  X in

procedure  RADIXSORT

, ... , X

i
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-- Costs O(n) time  on unit cost RAM

-- avoids WWWW(nlogn) lower bound on SORT
by avoiding comparisons
instead uses indexing of RAM

generalizes (in c passes) to key
domains {1 ,..., c }n

-- 
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open problems in sorting

(1) Complexity of SHELLSORT

-- very good in practice
claims Sedgewick

-- Is it  qqqq(n 1.5 )?

(2) Complexity of variable length

-- sort  on multitape TM or RAM

-- Is it  WWWW(n log n)?


