Algorithms
Professor John Reif

ALG 4.2

Universal Hash Functions:

CLR - Chapter 34
Auxillary Reading Selections:
AHU-Data Section 4.7
BB Section 8.4.4
Handout: Carter \& Wegman, "Universal
Classes of Hash Functions", JCSS,
Vol. 18, pp. 143-154, 1979.

Hash Function

f has conflict at $\mathrm{x}, \mathrm{y} \in \mathrm{A}$ if $\mathbf{x} \neq \mathbf{y}$ but $\mathrm{f}(\mathrm{x})=\mathbf{f}(\mathbf{y})$

$$
\sigma_{f}(x, y)= \begin{cases}1 & \text { if } x \neq y \text { and } f(x)=f(y) \\ 0 & \text { else }\end{cases}
$$

If H is a set of hash functions,

for set of keys S,

H is a universal ${ }_{2}$ set of hash functions

$$
\text { if } \sigma_{H}(x, y) \leq \frac{|H|}{|\mathbf{B}|} \text { for all } x, y \varepsilon A
$$

i.e. no pair of keys x, y are mapped into the same index by $>\frac{1}{|\mathrm{~B}|}$ of all functions in H

Proposition 1

Given any set H of hash fn, $\exists \mathrm{x}, \mathrm{y} \in \mathrm{A}$ s.t.

$$
\sigma_{H}(x, y)>|H|\left(\frac{1}{|B|}-\frac{1}{|A|}\right)
$$

proof

let $a=|A|, b=|B|$
By counting, we can show

$$
\sigma_{f}(A, A) \geq b\left(\frac{a}{b}-1\right)^{2} \geq \frac{a^{2}}{b}-a
$$

Thus

$$
\sigma_{H}(A, A) \geq a^{2}|H|\left(\frac{1}{b}-\frac{1}{a}\right)
$$

By the pidgeon hole principle
ヨ x,y ε A s.t

$$
\sigma_{H}(x, y) \geq|H|\left(\frac{1}{b}-\frac{1}{a}\right)
$$

Proposition 2: Let $\mathrm{x} \in \mathrm{A}, \mathrm{S} \underline{\mathrm{c}} \mathrm{A}$

For f chosen randomly from a universal ${ }_{2}$ class H of hash functions, the expected number of colisions is

$$
\sigma_{\mathrm{f}}(\mathrm{x}, \mathrm{~S}) \leq \frac{|\mathrm{S}|}{|\mathrm{B}|}
$$

$$
\begin{aligned}
& \frac{\operatorname{proof}}{E\left(\sigma_{f}(x, S)\right)}=\frac{1}{|H|} \sum_{f \varepsilon H} \sigma_{f}(x, S) \\
& =\frac{1}{|H|} \sum_{y \varepsilon S} \sigma_{H}(x, y) \text { by definition } \\
& \leq \frac{1}{|H|} \sum_{y \in S} \frac{|H|}{|B|} \text { by definition of universal }{ }_{2} \\
& \quad=\frac{|S|}{|B|}
\end{aligned}
$$

application

associative memory storage of $|\mathrm{S}|$

keys onto |B| linked lists.
Given key $\mathrm{x} \quad \varepsilon \mathrm{A}$, store x in list $\mathrm{f}(\mathrm{x})$
Proposition 2 implies each list has expected

Proposition 3

Let \mathbf{R} be a sequence of requests with k insertion operations into an associative memory.

If f is chosen at random from set of universal ${ }_{2}$ class H, the expected
total cost of all k searches is

$$
\text { length } \leq \frac{|S|}{|B|}=0(1) \text { if }|\mathrm{B}| \geq|\mathrm{S}|
$$

Gives 0(1) time for STORE, RETRIEVE, and DELETE operations

$$
\leq|\boldsymbol{R}|\left(1+\frac{k}{B}\right)
$$

proof

There are $|\mathbf{R}|$ total search ops, and each takes by Proposition 2 expected
time $\leq 1+\frac{k}{|B|} \cdot$
note
if $|\mathbf{B}| \geq k$, then expected total
time is $\mathbf{O}(|\mathrm{R}|)$.

Bounds on distribution of $\sigma_{f}(\mathbf{x}, S)$

Proposition 4 Let $x \in A, S \subset A$

Let $\mu=$ expected value of $\sigma_{f}(x, S)$
For f chosen randomly from universal 2 set of functions \mathbf{H},
$\operatorname{Prob}\left(\sigma_{f}(x, S)>t \cdot \mu\right)<\frac{1}{t}$

proof

immediate from Markov bound
improved bounds on probability:
prob $\leq \frac{11}{\mathbf{t}^{4}}$ for universal hash fins. H_{2}, H_{3}
(using 2nd and 4th moments of prob. distribution.)

$$
\mathrm{H}=\text { universal }_{2} \text { set of hash functions. }
$$

$\mathrm{E}_{1}=$ Expected cost of random set of k requests using a worst case function f in H (random input)
$\mathrm{E}_{2}=$ Expected cost of worst case set of k requests using a random function f in H (randomized algorithm)

Prop $5 \quad E_{1} \geq(1-\varepsilon) E_{2} \quad$ where $\varepsilon=\frac{|B|}{A \mid}$

Example of Universal $2 \quad$ Class

> Set of Keys Table

proof

Let $\mathbf{a}=|\mathbf{A}|, \mathbf{b}=|\mathbf{B}|$.
Prop 2 implies $E_{2} \leq 1+\frac{|S|}{b}$
Suppose S is chosen randomly. for $x, y \varepsilon S$,
$E\left(\sigma_{f}(x, y)\right)=\frac{1}{a^{2}} \sigma_{f}(A, A)$
$\geq \frac{1}{a^{2}}\left[a^{2}\left(\frac{1}{b}-\frac{1}{a}\right)\right]$ by Prop 1
$\geq\left(\frac{1}{b}-\frac{1}{a}\right)$
So $\quad \mathrm{E}_{1} \geq 1+\mathrm{E}\left(\sigma_{\mathrm{f}}(\mathrm{x}, \mathrm{S})\right)$

$$
\geq 1+|S|\left(\frac{1}{b}-\frac{1}{a}\right)
$$

Lemma

Theorem

$$
H_{1} \text { is universal }_{2}
$$

proof Let $\mathbf{n}_{\mathrm{i}}=\left|\left\{\mathbf{t} \varepsilon \mathrm{Z}_{\mathrm{p}} \mid \mathbf{g}(\mathbf{t})=\mathbf{i}\right\}\right|$

By definition of $g(x)=x \bmod b$,

$$
\Rightarrow \quad n_{i} \leq \frac{p-1}{b}+1
$$

For any given r, the number of s where $s \neq r$ and $g(r)=g(s)$ is

$$
\sigma_{g}\left(r, Z_{p}\right) \leq \frac{p-1}{b}
$$

But there are p choices of r,
so $\quad p \cdot\left(\frac{(p-1)}{b}\right) \geq \sigma_{g}\left(Z_{p}, Z_{p}\right)$

$$
=\sigma_{\mathrm{H}_{1}}(\mathrm{x}, \mathrm{y}) \text { by Lemma }
$$

(Also note $\quad \sigma_{\mathbf{H}}(\mathbf{x}, \mathbf{x})=\mathbf{0}$)
Hence $\quad \sigma_{H_{1}}(x, y) \leq \frac{\left|H_{1}\right|}{b}$ since $\left|H_{1}\right|=p(p-1)$ so H_{1} is universal ${ }_{2}$

Universal Hash Fns on Long keys Given class of hash functions \mathbf{H}, define hash functions $J=\left\{\mathbf{h}_{\mathrm{f}, \mathrm{g}} \mid \mathbf{f}, \mathrm{g} \in \mathbf{H}\right\}$ where $\quad h_{f, g}\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \oplus\binom{\uparrow}{\mathbf{x}_{2}}$
exclusive or

Theorem Suppose $B=\{0,1, \ldots, b=1\}$ where b is a power of 2 . Suppose this class of fns $\boldsymbol{A} \rightarrow \boldsymbol{B}$
\exists real $r \forall i \varepsilon B \forall x_{1}, y_{1} \varepsilon A, x_{1} \neq y_{1}$
$\Rightarrow\left\{f \varepsilon H \mid f\left(x_{1}\right) \oplus f\left(y_{1}\right)=i\right\}|\leq r| H$
Then $\forall x, y \in(A \times A), x \neq y$
$\{h \varepsilon J \mid \boldsymbol{h}(x) \oplus \boldsymbol{h}(\boldsymbol{y})=\boldsymbol{i}\}|\leq r| H \mid$
Proof for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ in $A \times A$
$i \varepsilon B$ then $|\boldsymbol{h} \varepsilon J| \boldsymbol{h}(x) \oplus \boldsymbol{h}(\boldsymbol{y})=\boldsymbol{i}\} \mid$
$=\left\{f, g \varepsilon H \mid f\left(x_{1}\right) \oplus g\left(x_{2}\right) \oplus f\left(y_{1}\right) \oplus g\left(y_{2}\right)=i\right\}$
$=\sum_{y \in H}\left\{f \varepsilon H \mid f\left(x_{1}\right) \oplus f\left(y_{1}\right)=i \oplus g\left(x_{2}\right) \oplus g\left(y_{2}\right)\right\}$
$\leq\left\{f \in H \mid f\left(x_{1}\right) \oplus f\left(y_{1}\right)=i\right\}|\leq r| H \mid$
example H_{1} with $m=0$ gives J with $r=\frac{1}{\mid B}$ universal!

Universal 2 Hashing with out Multiplication

$A=$ set of d digit numbers base α so, $|A|=\alpha^{d}$
$B=$ set of binary numbers length \mathbf{j}
$\mathbf{M}=$ arrays of length d $\cdot \alpha$,
with elements in B
$\nabla \mathrm{m} \quad \varepsilon \mathrm{M} \quad$ let $\mathrm{m}(\mathrm{k})=\mathrm{kth}$ element of array m
$\nabla_{x} \in A \quad$ let $\quad x_{k}=k$ th digit of x base α
definition $f_{m}(x)=m\left(x_{1}+1\right) \oplus m\left(x_{1}+x_{2}+2\right) \oplus \ldots \oplus m\left(\sum_{k=1}^{d} x_{k}+k\right)$

Theorem

$$
H_{2}=\left\{f_{m} \mid m \quad \varepsilon M\right\} \text { is universal }{ }_{2}
$$

proof for $\mathrm{x}, \mathrm{y} \quad \varepsilon \mathrm{A}$,

$$
\text { let } \begin{aligned}
f_{m}(x) & =r_{1} \oplus r_{2} \oplus \ldots \oplus r_{s} \quad \text { rows of } m \\
f_{m}(y) & =r_{s+1} \oplus \ldots \oplus r_{t}
\end{aligned}
$$

$$
\text { Then } f_{m}(x)=f_{m}(y) \text { iff } r_{1} \oplus \ldots \oplus r_{t}=\overline{0}
$$

$$
\text { But if } x \neq y \Rightarrow \exists \mathrm{l} \text { s.t. } r_{k} \text { in only one of } f_{m}(x), f_{m}(y)
$$

$$
\text { so }\left(f_{m}(x)=f_{m}(y) \quad \text { iff } r_{k}=\underset{i \neq k}{\oplus} r_{i}\right)
$$

But there are only $|B|$ possibilities for row r_{k}
so x, y will collide for $\frac{1}{|B|}$ of fns $f_{m} \varepsilon H_{2}$
Hence H_{2} is universal ${ }_{2}$

Analysis of Hashing for Uniform Random Hash fn

\# of keys hashed
load factor $\boldsymbol{\alpha}=$

Hashing with Chaining

keep list of conflicts at each index

length is binomial variable
expected length $=\boldsymbol{\alpha}$

Expected Time Cost per hash $=\boldsymbol{O}(\mathbf{1}+\boldsymbol{\alpha})$
By Chernoff Bounds, with high likelyhood time cost per hash $\leq \boldsymbol{O}(\boldsymbol{\alpha} \log (\#$ keys $))$

Open Address Hashing

 (With Uniform Random Hash fn)Resolve conflicts by applying another hash function

$\alpha=$ load factor $=$ prob. of occupied hash address
\# rehashes as geometric variable
expected hash time $=\frac{1}{1-\boldsymbol{\alpha}}=\mathbf{1}+\boldsymbol{\alpha}+\boldsymbol{\alpha}^{2}+\ldots$

