Algorithms Professor John Reif

## **ALG 4.2**

## **Universal Hash Functions:**

CLR - Chapter 34 Auxillary Reading Selections: AHU-Data Section 4.7 BB Section 8.4.4 Handout: Carter & Wegman, "Universal Classes of Hash Functions", JCSS, Vol. 18, pp. 143-154, 1979.

| Hash Function |         |
|---------------|---------|
| f : A         | ▶ B     |
| 4             | 4       |
|               |         |
| keys          | indices |

f has *conflict* at x,y  $\varepsilon A$  if  $x \neq y$  but f(x) = f(y)



1

if x≠y and f(x) = f(y)
 else



H is a *universal* 2 set of hash functions  
if 
$$\sigma_{H}(x,y) \leq \frac{|H|}{|B|}$$
 for all x, y  $\in A$ 

i.e. no pair of keys x,y are mapped into the same index by >  $\frac{1}{|B|}$  of all functions in H



Proposition 1

 Given any set H of hash fn,

 J x,y 
$$\in A$$
 s.t.

  $\sigma_{H}(x,y) > |H|$ 
 $\left(\frac{1}{|B|}, \frac{1}{|A|}\right)$ 

 proof

  $dt = |A|, b = |B|$ 

 By counting, we can show

  $\sigma_{f}(A, A) \ge b(\frac{a}{b} - 1)^{2} \ge \frac{a^{2}}{b} - a$ 

Thus 
$$\sigma_{H}(A,A) \ge a^{2} |H| \left(\frac{1}{b} \cdot \frac{1}{a}\right)$$

By the pidgeon hole principle  

$$\exists x, y \in A \text{ s.t}$$
  
 $\sigma_{H}(x, y) \ge |H| \left(\frac{1}{b} - \frac{1}{a}\right)$ 

note

in most applications, |A| >> |B|and then any universal 2 class has asymptotically a minimum number of conflicts

7

# **Proposition 2:** Let $x \in A$ , $S \subseteq A$

For f chosen randomly from a universal <sub>2</sub> class H of hash functions, the expected number of colisions is

$$\sigma_{f}(x,S) \leq \frac{|S|}{|B|}$$

$$\frac{proof}{\mathbf{E}(\sigma_{f}(\mathbf{x},\mathbf{S}))} = \frac{1}{|\mathbf{H}|} \sum_{f \in \mathbf{H}} \sigma_{f}(\mathbf{x},\mathbf{S})$$
$$= \frac{1}{|\mathbf{H}|} \sum_{\mathbf{y} \in \mathbf{S}} \sigma_{\mathbf{H}}(\mathbf{x},\mathbf{y}) \text{ by definition}$$
$$\leq \frac{1}{|\mathbf{H}|} \sum_{\mathbf{y} \in \mathbf{S}} \frac{|\mathbf{H}|}{|\mathbf{B}|} \text{ by definition of universal}_{2}$$
$$= \frac{|\mathbf{S}|}{|\mathbf{B}|}$$

### application

associative memory storage of |S| keys onto |B| linked lists.

Given key xε A, store x in list f(x)Proposition 2 implies each list has expected

length 
$$\leq \frac{|S|}{|B|} = 0(1)$$
 if  $|B| \geq |S|$ 

Gives 0(1) time for STORE, RETRIEVE, and DELETE operations

### **Proposition 3**

Let **R** be a sequence of requests with **k** insertion operations into an associative memory.

If f is chosen at random from set of universal 2 class H, the expected total cost of all k searches is

 $\leq |\mathbf{R}| (1 + \frac{k}{|\mathbf{B}|}).$ 

#### proof

9

There are |R| total search ops, and each takes by Proposition 2 expected

time 
$$\leq 1 + \frac{k}{|\mathbf{B}|}$$

#### note

if  $|\mathbf{B}| \ge \mathbf{k}$ , then expected total

time is O(|R|).



*Prop* 5 
$$E_1 \ge (1-\epsilon) E_2$$
 where  $\epsilon = \frac{|B|}{|A|}$ 

### proof

Let a = |A|, b = |B|. **Prop 2** implies  $E_2 \le 1 + \frac{|S|}{b}$ Suppose S is chosen randomly. for x, y  $\varepsilon$  S,  $\mathbf{E}(\boldsymbol{\sigma}_{\mathbf{f}}(\mathbf{x},\mathbf{y})) = \frac{\mathbf{I}}{2} \boldsymbol{\sigma}_{\mathbf{f}}(\mathbf{A},\mathbf{A})$  $\geq \frac{1}{a^2} \left[ a^2 \left( \frac{1}{b} - \frac{1}{a} \right) \right]$  by Prop 1  $\geq \left(\frac{1}{b} \cdot \frac{1}{a}\right)$ So  $E_1 \ge 1 + E(\sigma_f(x,S))$  $\geq 1 + |S| \left(\frac{1}{b} \cdot \frac{1}{a}\right)$ 

## **Example of Universal** 2 Class

Set of Keys Table Let  $A = \{0, 1, ..., a-1\}$  Set of Keys  $B = \{0, 1, ..., b-1\}$  Table Let p be a prime  $\geq a$   $Zp = \{0, 1, ..., p-1\} = number field mod p$   $define g : Z_p \rightarrow B \qquad s.t.$   $g(x) = x \mod b$   $define for n, m \in Z_p \quad with m \neq 0,$   $h_{n,m}: A \rightarrow Z_p$   $with h_{n,m} (x) = (mx+n) \mod p$   $define f_{n,m}: A \rightarrow B \quad s.t. \quad f_{n,m} (x) = g(h_{m,n} (x))$   $H_I = \{f_{m,n} \mid m, n \in Z_p, m \neq 0\}$  $Claim: H_1 \text{ is universal}_2$ 

13

#### Lemma

for distinct x, y  $\epsilon A$ ,  $\sigma_{H_1}(x,y) = \sigma_g(Z_p, Z_p)$ 

#### proof

$$\sigma_{g} (Z_{p}, Z_{p}) = |\{(r,s) | r, s \in Z_{p}, r \neq s, g(r) = g(s)\}|$$

**Observe that the linear equations:** 

 $xm + n = r \pmod{p}$   $ym + n = s \pmod{p}$ have *unique* solutions in Z p

So  $(\mathbf{r}, \mathbf{s}) = (\mathbf{h}_{m,n}(\mathbf{x}), \mathbf{h}_{m,n}(\mathbf{y}))$  then  $(\mathbf{f}_{m,n}(\mathbf{x}) = \mathbf{f}_{m,n}(\mathbf{y})$  if and only if  $\mathbf{g}(\mathbf{r}) = \mathbf{g}(\mathbf{s}))$ 

 $\sigma_{H}^{}(x,y)\,$  is the number of such pairs in  $(r,s)\,\epsilon\,\sigma_{g}\,\,(Z_{p}\,,\,Z_{p})$ 

### Theorem

 $H_1$  is universal 2

*proof* Let 
$$\mathbf{n}_i = |\{\mathbf{t} \in \mathbf{Z}_p \mid \mathbf{g}(\mathbf{t}) = \mathbf{i}\}|$$

By definition of  $g(x) = x \mod b$ ,

$$\Rightarrow$$
  $n_i \leq \frac{p-1}{b} + 1$ 

For any given r, the number of s where s  $\neq$  r and g(r) = g(s) is

$$\sigma_{g}(\mathbf{r}, \mathbf{Z}_{p}) \leq \frac{\mathbf{p}-\mathbf{1}}{\mathbf{b}}$$

But there are p choices of r,

so 
$$p \cdot \left(\frac{(p-1)}{b}\right) \ge \sigma_g (Z_p, Z_p)$$
  
 $= \sigma_{H_1}(x, y)$  by Lemma  
(Also note  $\sigma_H(x, x) = 0$ )  
Hence  $\sigma_{H_1}(x, y) \le \frac{|H_1|}{b}$  since  $|H_1| = p(p-1)$   
so  $H_1$  is universal 2

Universal Hash Fns on *Long* keys Given class of hash functions H, define hash functions  $J = \{h_{f,g} \mid f,g \in H\}$ where  $h_{f,g}(x_1, x_2) = f(x_1) \bigoplus_{i=1}^{n} g(x_2)$ exclusive or

Theorem Suppose  $B = \{0, 1, \dots, b = 1\}$  where b is a power of 2. Suppose this class of fns  $A \rightarrow B$  $\exists \text{ real } r \forall i \in B \forall x_1, y_1 \in A x_1 \neq y_1$  $\Rightarrow$  { $f \in H \mid f(x_1) \oplus f(y_1) = i$ }  $\leq r \mid H \mid$ Then  $\forall x, y \in (A \times A), x \neq y$  $\{h \in J \mid h(x) \oplus h(y) = i\} \leq r |H|$ **Proof** for  $x = (x_1, x_2), y = (y_1, y_2)$  in  $A \times A$  $i \in B$  then  $\{h \in J \mid h(x) \oplus h(y) = i\}$  $= \left\{ f, g \in H \mid f(x_1) \oplus g(x_2) \oplus f(y_1) \oplus g(y_2) = i \right\}$  $= \sum \left\{ f \mathcal{E} H \mid f(x_1) \oplus f(y_1) = i \oplus g(x_2) \oplus g(y_2) \right\}$  $\leq \left\{ f \in H \mid f(x_1) \oplus f(y_1) = i \right\} \leq r |H|$ example  $H_1$  with m = 0 gives J with  $r = \frac{1}{|\mathbf{r}|}$  universal! 18

Universal 2 Hashing with out Multiplication  $A = set of d \text{ digit numbers base } \alpha \text{ so, } |A| = \alpha^d$  B = set of binary numbers length j  $M = arrays of length d \cdot \alpha$ , with elements in B

 $\forall m \ \epsilon \ M$  let m(k) = kth element of array m  $\forall x \ \epsilon \ A$  let  $x_k = kth$  digit of x base  $\alpha$ 

definition 
$$f_m(x) = m(x_1+1) \oplus m(x_1+x_2+2) \oplus \dots \oplus m$$

|         | m(1) |
|---------|------|
| array m |      |
|         | m(k) |
|         |      |
|         | ·J   |

# Theorem H<sub>2</sub> = { f<sub>m</sub>| m $\epsilon$ M } is universal<sub>2</sub> proof for x, y $\epsilon$ A, let f<sub>m</sub> (x) = r<sub>1</sub> $\oplus$ r<sub>2</sub> $\oplus$ ... $\oplus$ r<sub>s</sub> rows of m f<sub>m</sub>(y) = r<sub>s+1</sub> $\oplus$ ... $\oplus$ r<sub>t</sub> Then f<sub>m</sub> (x) = f<sub>m</sub>(y) iff r<sub>1</sub> $\oplus$ ... $\oplus$ r<sub>t</sub> = $\overline{o}$ But if $x \neq y \Rightarrow \exists k$ s.t. r<sub>k</sub> in only one of f<sub>m</sub>(x), f<sub>m</sub>(y) so $\left( f_m(x) = f_m(y) \text{ iff } r_k = \bigoplus_{i \neq k} r_i \right)$ But there are only |B| possibilities for row r<sub>k</sub>

so x,y will collide for  $\frac{1}{|\mathbf{B}|}$  of fns  $f_m \in \mathbf{H}_2$ 

Hence H<sub>2</sub> is universal<sub>2</sub>

## Analysis of Hashing for Uniform Random Hash fn

load factor  $\alpha =$ 

# of keys hashed

# of indicies in Hash Table

# Hashing with Chaining

keep list of conflicts at each index



length is *binomial* variable

expected length =  $\alpha$ 

Expected Time Cost per hash =  $O(1 + \alpha)$ 

By Chernoff Bounds, with high likelyhood time cost per hash  $\leq O(\alpha \log(\# \text{ keys}))$ 

## **Open Address Hashing** (With Uniform Random Hash fn)

Resolve conflicts by applying another hash function



 $\alpha$  = load factor = prob. of occupied hash address

# rehashes as geometric variable

expected hash time =  $\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + ...$