
1

Algorithms
Professor John Reif

ALG 5.1
Graph Algorithms using

Depth First Search:

(a) Graph Definitions
(b) DFS of Graphs
(c) Biconnected Components
(d) DFS of Digraphs
(e) Strongly Connected Components

Main Reading Selections:
CLR, Chapter 23

Auxillary Reading Selections:
AHU-Design, Sections 5.2-5.5
AHU-Data, Chapters 6 and 7
BB, Chapter 6

2

Graph Terminology

graph G = (V,E)

vertex set V

edge set E pairs of vertices
 which are adjacent

G directed if edges ordered pairs (u,v)

G undirected if edges unordered pairs {u,v}

 u vÆÆÆÆ

 u v

proper graph:
no loops

no multi-edges

V' is a subset of V, E' is a subset of E

Sub gr ap h G' of G

G' = (V', E') where

3

Path p ...
e1 e2 ek

v0 v 2v vk-1 vk1

p is a sequence of vertices v o , v 1 , ... ,v k
where for i=1, ..., k , v i-1 is adjacent to v i

E q u i v a l e n t l y ,

p is a sequence of edges e 1,...,e k
where for i=2,...,k edges e

i-1 , e
i share a vertex

simple path no edge or vertex repeated,
except possibly v o =v k

cycle is a path p with vo =v k where k>1

...
vk = vo v1 v2 vk-1

4

Connectivity of Undirected Graphs

G is connected if $$$$ path between
each pair of vertices

else G has ≥≥≥≥ 2 connected components:
maximal connected subgraphs

5

G is biconnected if $$$$ two disjoint paths
between each pair of vertices

(or G is single edge)

6

Graph Representation

graph G = (V,E)

 n = |V| = # vertices

 �����m = |E| = # edges

1

2 3

4

Adjacency Matrix A

0
1
1
0

1
0
1
0

1
1
0
1

0
0
1
0

1 2 3 4
1
2
3
4

A is size n x n

 A(i ,j) = { 1 (i ,j) eeee E

 0 else

space cost n 2 - n

7

space cost O(n+m)

Adjacency Lists Adj(1), ... , Adj (n)

Adj(v) = list of vertices adjacent to v

1

2

3

 4

2

1

1

3

3

3

2 4

8

Tree
 T is graph with unique path

between every pair of vertices

.
.

.

.
.

..
.

.
. .

n = # vertices

n-1 = # edges

9

Directed Tree T is digraph with
distinguished vertex
root r such that each
vertex reachable from r
by a unique path

have no proper descendantsleaves

(non sexist)

Family Relationships:

r

-�ancesters
-�descendants

-�parent
-�child
-�siblings

Ordered Tree
is a directed tree with

siblings ordered

Forest

 set of Trees

1 0

B

A

C

D F

E H I

Ordered
Tree Traversals

P r e o r d e r A,B,C,D,E,F,H,I
[1] root (order vertices as pushed on stack)
[2] preorder left subtree
[3] preorder right subtree

P o s t o r d e r B,E,D,H,I,F,C,A
[1] postorder left subtree
[2] postorder right subtree
[3] root

(order vertices as popped off stack)

In order B,A,E,D,C,H,F,I
[1] inorder left subtree
[2] root
[3] inorder right subtree

1 1

T is a spanning tree of graph G if
(1) T is a directed tree with the

same vertex set as G

(2) each edge of T is a directed version
of an edge of G

root
1

tree
edge back edge

2
5

3 6

7

8

cross edge

9

10 11

12

4

.

. .
.

.

.

. .

.

.

an edge (u,v) of G-T is backedge
 if u is a descendant or ancester of v.

else (u,v) is a crossedge
Spanning Forest:

 forest of spanning trees
of connected components of G

1 2

Tarjan's Algorithm
Depth First Search

Input graph G =(V,E) represented by
adjacency lists Adj(v) for each v eeeeV

[0] N ¨̈̈̈ 0
[1] for all v eeeeV do (number (v) 0

children (v) ()) od
[2] for all v eeee V do

if number (v)=0 then DFS(v)
[3] output spanning forest defined by children

¨̈̈̈
¨̈̈̈

recursive procedure DFS(v)

[1] N ¨̈̈̈ N+1; number (v) ¨̈̈̈ N

[2] for each u eeee Adj(v) do
if number(u) = 0 then
(add u to children (v); DFS(u))

1 3

input size n V m E= =,

Theorem Depth First Search takes total time
 cost O(n+m)

 proof
can associate with each edge and vertex

a constant number of operations.

.
.. .

.
.

. .

1

2

3

4

5

6

7

8

.
.

.

.

.

.

T G
1

2

3

 4
7

6

5

8

.

1 4

Sup. we preorder number a tree T
Let Dv == # of descendants of v

Lemma
u is descendant of v
iff v u v Dv££ << ++

w

Dv

u

*

v

Lemma
If u is descendant of v
and u w,(()) is back edge s.t.w v<<
then w is a proper ancestor of v

1 5

Depth First Search Tree T

u ÆÆÆÆ v iff (u,v) is tre e e dge of T

u ÆÆÆÆ**** v iff u is an ance ste r of v

u- - - v iff (u,v) i s backedge i f (u ,v) eeee G- T

w ith e ithe r u ÆÆÆÆ**** v or v ÆÆÆÆ**** u

 note DFS tree T has no cross edges

will number vertices by order
visited in DFS (preorder of T)

.

1 6

2[2]

3[2]

4[2]

5[1]

6[5]

7[5]

1[1]

8[1]

v[low(v)]

number vertices
 by DFS number

example
 figure gives v[low(v)]

For each vertex v,

d ef i ne l ow(v) = mi n({v} »»»» {w | v ÆÆÆÆ**** - - - w})

can prove by induction:

Lemma l ow(v) =mi n({v} »»»» {l ow(w) |vÆÆÆÆw} »»»» {w|v- - - w})

can easily be computed during DFS
in postorder.

1 7

G is Biconnected iff either

(1) G is a single edge, or

(2) for each triple of vertices u,v,w

 $$$$ w-avoiding path from u to v

(equivalently: $$$$ two disjoint paths from u to v)

Biconnected Components
maximal subgraphs
of G which are biconnected.

.

G

. .
.

.

.
2

3

4

5

6

7

1

2

2

4

5

6

7

1

5

8

fifififi8.

.

.1

3

1 8

The intersection of two biconnected
components consists of at most one vertex,
called an Articulation Point.

G
1

2

3

4

5

6

7

8

E x a m p l e 1, 2, 5 are articulation points

If can find articulation points
then can compute biconnected components:

Method during DFS, use auxillary stack
to store visited edges. Each time
we complete the DFS of a tree child of

 an articulation point, pop all stacked
 edges currently in stack (these form

a biconnected component) up to that tree edge.

1 9

Characterization

Theorem

a is an articulation point iff either

(1) a is root with ≥≥≥≥ 2 tree children
or
(2) a is not root but a has

 a tree child v with low(v) ≥≥≥≥ a
(note easy to check given low computed)

2 0

proof

 The conditions are sufficient since any
a-avoiding path from v remains in the
subtree T v rooted at v, if v is a child of a

To show condition necessary ,assume a is
an articulation point.

Case(1)
 If a is a root and is articulation point,

a must have ≥≥≥≥ 2 tree edges to two distinct
 biconnected components.

Case(2) If a is not root, consider graph G- {a}
which must have a connected component C
consisting of only descendants of a, and
with no backedge from C to an ancestor
of v. Hence a has a tree child v in C and
low (v) ≥≥≥≥ a

2 1

Case (2)

root

.

.

.

c

no
back
edges

a

Articulation Point a

v

not the root

subtree

is

T
v

2 2

Theorem

 The Biconnected Components
of G = (V,E) can be computed
in time O(|V|+|E|) using a RAM

proof
 Summary of Algorithm:

[0] initialize a STACK to empty

During a DFS traversal do

[1] add visited edge to STACK

[2] compute low of visited vertex v
using Lemma

[3] test if v is an articulation point

[4] if so, for each u eeee children(v) in order

do pop all edges in STACK
upto and including tree edge (v,u)
output these edges as a

biconnected component of G
od

where low () >u v

Time Bounds:

Each edge and vertex can be associated
with 0(1) operations. So time O(|V|+|E|).

2 3

Depth first search tree T of Directed Graph
G = (V,E)

 1

 2

 3

 4

 5

 6

 7 8

fo
rw

a
rd

c
y

c
le

c
y

c
le

cross

c
ro

s
s

cross

8

7

 64

1

2

3

5

i= DFS number

 v
i i = postorder

= order vertex
 popped off

DFS stack

edge set E partitioned:
edge (u,v) is

 t r ee ed ge i f u ÆÆÆÆ v i n T
 cy c l e ed ge i f v ÆÆÆÆ**** u
 f or war d ed ge i f (u ,v) œœœœ T

but u ÆÆÆÆ**** v i n T

 cr os s ed ge ot herwi s e
{

2 4

Digraph G = (V,E) is acylic if it has no cycles

Topological Order

 V = {v 1 ,..., v n } satisfies
(v i , v j) eeee E fifififi i < j

Lemma
G is acylic iff $$$$ no cycle edge

2 5

Suppose (u,v) eeee E is a cycle edge,

tree edges from v to u. Then (u,v),
 e 1 ,...,e k is a cycle.

Next suppose there is no cycle edge.

Then order vertices in postorder
of DFS spanning forest (i.e., in order

 vertices are popped off DFS stack).
 This is a reverse topological order of G.

So G can have no cycles.

s o v ÆÆÆÆ**** u. But l e t e 1 , . . . , e k be t he

proof

Note: Gives an O(|V|+|E|) algorithm
for computing Topological Ordering
of an acyclic graph G = (V,E),
(Knuth).

2 6

Directed Graph G = (V,E)

 1

 2

 3

 4

 5

 7

 6

 8

Strong Component

maximum set vertices

S of V such that """" u,v eeee S

$$$$ cycle containing u,v

Collapsed Graph

 G* derived by
collapsing each strong component
into a single vertex.

note G* is acyclic.

2 7

(due to Kosaraju)

Algorithm
Strong Components

Input digraph G

 [1] Perform DFS on G. Renumber
 vertices by postorder.

 [2] Let G - by digraph derived
 from G by reversing direction of
 each edge.

 [3] Perform DFS on G - , starting
 at highest numbered vertex.

 Output resulting DFS tree of G -

 as a strongly connected component
 of G.

 [4] repeat [3], starting at highest
 numbered vertex not so for
 visited (halt when all vertices visited)

 Time Bounds
 each DFS costs time O(|V|+|E|)

 fifififi total time O(|V|+|E|).

2 8

Example

1

2

3

4

5

6

7

8
1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8
1

2

3

4

5

6

7

8

G

G

2 9

Theorem
The Algorithm outputs the
strong components of G.

We must show these are exactly the
vertices in each DFS spanning forest of G -

 Suppose
v,w in the same strong component
and DFS search in G - starts at vertex r
and reaches v. Then w will also be

reached. So v,w are output together
in same spanning tree of G -.

Suppose
v,w output in same spanning tree
of G .- Let r be the root of that

spanning tree. Then $$$$ paths in G -

from r to each of v and w.
So there exists paths in G to r from
each of v and w. Suppose no path
in G to r from v. Then since r has a
higher postorder than v, there is no path
in G from v to r, a contradiction. Hence $$$$
path in G from r to v, and similar

 argument gives path from r to w. Hence,
v and w are in a cycle of G, so must be in
the same strong component.

proof

