

Path p
$$v_0$$
 v_1 v_2 v_2 v_k

p is a sequence of vertices $v_0, v_1, ..., v_k$ where for i=1, ..., k, v_{i-1} is adjacent to v_i

Equivalently,

p is a sequence of edges $e_{1},...,e_{k}$ where for i=2,...,k edges e_{i-1} , e_{i} share a vertex

simple path no edge or vertex repeated, except possibly v₀=v_k

cycle is a path p with $v_0 = v_k$ where k>1

3

Connectivity of Undirected Graphs

G is *connected* if \exists path between each pair of vertices

else G has ≥ 2 *connected components:* maximal connected subgraphs

G is *biconnected* if ∃ two disjoint paths between each pair of vertices

5

Graph Representation

an edge (u,v) of G-T is *backedge* if u is a descendant or ancester of v. else (u,v) is a *crossedge*

Spanning Forest:

forest of spanning trees of connected components of G

Tarjan's Algorithm Depth First Search

Input graph G =(V,E) represented by adjacency lists Adj(v) for each v εV
[0] N ←0
[1] for all v εV do (number (v) ←0 children (v) ←()) od
[2] for all v εV do if number (v)=0 then DFS(v)
[3] output spanning forest defined by children

recursive procedure**DFS(v)**[1] N \leftarrow N+1; number (v) \leftarrow N

[2] for each u εAdj(v) do if number(u) = 0 then (add u to children (v); DFS(u))

11

input size
$$n = |V|, m = |E|$$

TheoremDepth First Search takes total time
cost O(n+m)

proof can associate with each edge and vertex a constant number of operations.

Sup. we <u>preorder</u> number a tree T Let $D_{\nu} = \#$ of descendants of ν

Lemma *u* is <u>descendant</u> of *v* iff $v \le u < v + D_v$

Lemma

If u is descendant of vand (u,w) is back edge s.t.w < vthen w is a proper ancestor of v

G is Biconnected iff either

(1) G is a single edge, or

(2) for each triple of vertices u,v,w

How we avoiding path from u to v

(equivalently:

 \exists two disjoint paths from u to v)

The intersection of two biconnected components consists of at most *one* vertex, called an *Articulation Point*.

Example 1, 2, 5 are articulation points

If can find articulation points then can compute biconnected components:

Method during DFS, use auxillary stack to store visited edges. Each time we complete the DFS of a tree child of an articulation point, pop all stacked edges currently in stack (these form a biconnected component) up to that tree edge.

Characterization

Theorem

a is an articulation point iff either

- (1) a is root with ≥ 2 tree children or
- (2) *a* is not root but *a* has a tree child v with $low(v) \ge a$

(note easy to check given low computed)

proof

The conditions are *sufficient* since any a-avoiding path from v remains in the subtree T $_{v}$ rooted at v, if v is a child of *a*

To show condition *necessary*, assume *a* is an articulation point.

Case(1)

If *a* is a root and is articulation point, *a* must have ≥ 2 tree edges to two distinct biconnected components.

Case(2) If a is not root, consider graph G- $\{a\}$ which must have a connected component C consisting of only descendants of a, and with no backedge from C to an ancestor of v. Hence a has a tree child v in C and low $(v) \ge a$

Theorem

The Biconnected Components of G = (V,E) can be computed in time O(|V|+|E|) using a RAM

proof

[0] initialize a STACK to *empty During* a DFS traversal *do*

Summary of Algorithm:

- [1] add visited edge to STACK
- [2] compute low of visited vertex v using Lemma
- [3] test if v is an articulation point
- [4] if so, for each $u \in children(v)$ in order where low $(u) \ge v$
 - *do* pop all edges in STACK upto and including tree edge (v,u) *output* these edges as a biconnected component of G

od

Time Bounds:

Each edge and vertex can be associated with 0(1) operations. So time O(|V|+|E|).

Digraph G = (V,E) is *acylic* if it has no cycles Topological OrderV = {v₁,...,v_n} satisfies (v_i,v_j) $\varepsilon E \Rightarrow i < j$

Lemma G is acylic iff **I** no cycle edge

proof

Suppose (u,v) εE is a cycle edge, so v $\stackrel{*}{\rightarrow}$ u. But let e_1, \ldots, e_k be the tree edges from v to u. Then (u,v), e_1, \ldots, e_k is a cycle.

Next suppose there is no cycle edge.

Then order vertices in postorderof DFS spanning forest (i.e., in ordervertices are popped off DFS stack).This is *reverse topological order*of G.So G can have no cycles.

Note: Gives an O(|V|+|E|) algorithm for computing Topological Ordering of an acyclic graph G = (V,E), (Knuth). **Directed Graph** G = (V,E)

Strong Component maximum set vertices S of V such that ∀u,v εS ∃ cycle containing u,v

Collapsed Graph

25

G* derived by collapsing each strong component into a single vertex.

note G* is acyclic.

(due to Kosaraju)

Algorithm

Strong Components

Input digraph G

[1] Perform DFS on G. Renumber vertices by postorder.

[2] Let G by digraph derived from G by reversing direction of each edge.

[3] Perform DFS on G⁻, starting at highest numbered vertex.

Output resulting DFS tree of G⁻ as a strongly connected component of G.

[4] repeat [3], starting at highest numbered vertex not so for visited (halt when all vertices visited)

Time Bounds

each DFS costs time O(|V|+|E|)

 \Rightarrow total time O(|V|+|E|).

Theorem

The Algorithm outputs the strong components of G.

proof

We must show these are exactly the vertices in each DFS spanning forest of G

Suppose

v,w in the same strong component and DFS search in G⁻ starts at vertex r and reaches v. Then w will also be reached. So v,w are output together in same spanning tree of G⁻.

Suppose

v,w output in same spanning tree of G⁻. Let r be the root of that spanning tree. Then ∃ paths in G⁻ from r to each of v and w. So there exists paths in G to r from each of v and w. Suppose no path in G to r from v. Then since r has a higher postorder than v, there is no path in G from v to r, a contradiction. Hence path in G from r to v, and similar argument gives path from r to w. Hence, v and w are in a cycle of G, so must be in the same strong component.