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Algorithms
Professor John Reif

ALG 5.1
Graph Algorithms using

Depth First Search:

(a)  Graph Definitions
(b)  DFS of Graphs
(c)  Biconnected Components
(d)  DFS of Digraphs
(e)  Strongly Connected Components

Main Reading Selections:
CLR, Chapter 23

Auxillary Reading Selections:
AHU-Design, Sections 5.2-5.5
AHU-Data, Chapters 6 and 7
BB, Chapter 6  
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Graph Terminology

graph G = (V,E)

vertex set   V

edge set  E  pairs of vertices
 which are adjacent

G directed  if edges ordered pairs (u,v)

G undirected  if edges unordered pairs {u,v}

 u  vÆÆÆÆ

 u  v

proper graph:
no loops

no multi-edges

 
 

V' is a subset of V,  E' is a subset of E

Sub gr ap h   G' of  G

G' = ( V',  E')  where
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Path p ...
e1 e2 ek

v0 v 2v vk-1 vk1

p is a sequence of vertices  v o , v 1 , ... ,v k
where for  i=1, ..., k , v i-1  is adjacent to v i

E q u i v a l e n t l y ,

p is a sequence of edges  e 1,...,e k
where for i=2,...,k edges e

i-1 , e
i  share a vertex

simple path no edge or vertex repeated,
except possibly v o =v k

cycle   is a path p with vo =v k where k>1

...
vk  =  vo v1 v2 vk-1
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Connectivity of Undirected Graphs

G is connected  if $$$$ path between
each pair of vertices

else G has ≥≥≥≥ 2     connected components:
maximal connected subgraphs



5

G is biconnected  if   $$$$  two disjoint paths
between each pair of vertices

(or G is single edge)
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Graph Representation

graph    G = (V,E)

 n = |V| = # vertices

 �����m = |E| = # edges

1

2 3

4

 
  

Adjacency Matrix A

0
1
1
0

1
0
1
0

1
1
0
1

0
0
1
0

1 2 3 4
1
2
3
4

A is size n x n

  
       

       

  
         

       A(i ,j) = { 1      (i ,j) eeee E

 0      else

space cost n 2 - n
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space cost  O(n+m)

Adjacency Lists  Adj(1), ... , Adj (n)

Adj(v) = list of vertices adjacent to v

1

2

3

  4

2

1

1

3

3

3

2 4
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Tree
 T is graph with unique path

between every pair of vertices

.
.

.

.
.

..
.

.
. .

n = # vertices

n-1 = # edges



9

Directed Tree T  is digraph with 
distinguished vertex
root  r  such that each
vertex reachable from r 
by a unique path

have no proper descendantsleaves

(non sexist)

Family Relationships:

r

-�ancesters
-�descendants

-�parent
-�child
-�siblings

Ordered Tree 
is a directed tree with

siblings ordered

Forest  

 set of Trees

1 0

B

A

C

D F

E H I

Ordered
Tree Traversals

P r e o r d e r A,B,C,D,E,F,H,I
[1] root (order vertices as pushed on stack)
[2] preorder left subtree
[3] preorder right subtree

P o s t o r d e r B,E,D,H,I,F,C,A
[1] postorder left subtree
[2] postorder right subtree
[3] root

(order vertices as popped off stack)

In order B,A,E,D,C,H,F,I
[1] inorder left subtree
[2] root
[3] inorder right subtree
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T is a spanning tree  of graph G if
(1) T is a directed tree with the

same vertex set as G

(2) each edge of T is a directed version
of an edge of G

root
1

tree
edge back edge

2
5

3 6

7

8

cross edge

9

10 11

12

4

.

. .
.

.

.

. .

.

.

an edge (u,v) of G-T is backedge  
 if u is a descendant or ancester of v.

else (u,v) is a crossedge
Spanning Forest:

  forest of spanning trees
of connected components of G
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Tarjan's Algorithm  
Depth First Search

Input graph   G =(V,E) represented by
adjacency lists Adj(v) for each v eeeeV

[0] N ¨̈̈̈ 0
[1] for all v eeeeV  do (number (v)  0

children (v)  ( ) ) od
[2] for all v eeee V  do

if  number (v)=0 then DFS(v)
[3] output spanning forest defined by children

¨̈̈̈
¨̈̈̈

recursive procedure DFS(v)

[1] N ¨̈̈̈ N+1;  number (v) ¨̈̈̈ N

[2] for each u eeee Adj(v)  do
if  number(u) = 0 then
(add u to children (v); DFS(u))
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input size n V m E= =,

Theorem    Depth First Search takes total time
 cost O(n+m)

  proof
can associate with each edge and vertex

a constant number of operations.
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T G
1

2

3

  4
7

6

5

8

.
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Sup. we preorder number a tree T
Let Dv == # of descendants of v

Lemma
u is descendant of v
iff v u v Dv££ << ++

w

Dv

u

*

v

Lemma
If u is descendant of v
and u w,(( )) is back edge s.t.w v<<
then w is a proper ancestor of v
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Depth First Search Tree T

u ÆÆÆÆ    v    iff    (u,v ) is  tre e  e dge  of T

u ÆÆÆÆ****     v    iff    u is  an ance ste r of v

u- - - v    iff    (u,v ) i s  backedge  i f  ( u ,v)  eeee    G- T

w ith e ithe r  u     ÆÆÆÆ****     v   or  v  ÆÆÆÆ****     u

 
     note DFS tree T has no cross edges

will number vertices by order
visited in DFS (preorder of T)

. .. . . . .   
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2[2]

3[2]

4[2]

5[1]

6[5]

7[5]

1[1]

8[1]

v[low(v)]

number vertices
   by DFS number

  

example
   figure gives v[low(v)]

For each vertex v,

d ef i ne    l ow( v)  = mi n( {v} »»»»    {w | v ÆÆÆÆ****     - - -  w})

can prove by induction:

  
Lemma  l ow( v) =mi n( {v} »»»»    {l ow( w) |vÆÆÆÆw} »»»»    {w|v- - - w})

can easily be computed during DFS
in postorder.
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G is Biconnected  iff either

(1) G is a single edge, or

(2) for each triple of vertices   u,v,w

   $$$$ w-avoiding path from u to v

(equivalently:  $$$$ two disjoint paths from u to v)

   
Biconnected Components
maximal subgraphs
of  G  which are biconnected.

.

G

. .
.

.

.
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7
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2
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4
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5
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fifififi8.

.

.1

3
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The intersection of two biconnected
components consists of at most one vertex,
called an Articulation Point.

G
1

2

3

4

5

6

7

8

E x a m p l e    1, 2, 5 are articulation points

If can find articulation points
then can compute biconnected components:

Method during DFS, use auxillary stack
to store visited edges.  Each time
we complete the DFS of a tree child of  

 an articulation point, pop all stacked  
 edges currently in stack (these form

a biconnected component) up to that tree edge.
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Characterization

Theorem 

 
 

a is an articulation point  iff either

(1) a is root with ≥≥≥≥ 2 tree children
or 
(2) a  is not root but a has

 a tree child v with low(v) ≥≥≥≥ a
( note  easy to check given low computed)

2 0

proof

   The conditions are sufficient  since any
a-avoiding path from v remains in the
subtree T v  rooted at v, if v is a child of a

To show condition necessary ,assume a is
an articulation point.

Case(1)
   If a  is a root and is articulation point,

a must have ≥≥≥≥ 2 tree edges to two distinct  
 biconnected components.

Case(2) If a is not  root, consider graph G- {a}
which must have a connected component C
consisting of only descendants of a, and
with no backedge from C to an ancestor
of v.  Hence a has a tree child v in C and
low (v) ≥≥≥≥ a
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Case (2)

root

.

.

.

c

no
back
edges

a

Articulation Point a

v

not the root

subtree

is

T
v

2 2

Theorem 

  The Biconnected Components
of G = (V,E) can be computed
in time O(|V|+|E|) using a RAM

proof 
  Summary of Algorithm:

[0] initialize a STACK to empty

During  a DFS traversal  do

[1] add visited edge to STACK

[2] compute low of visited vertex v
using Lemma

[3] test if v is an articulation point

[4] if so, for  each u eeee children(v) in order

 
  

do  pop all edges in STACK
upto and including tree edge (v,u)
output  these edges as a

biconnected component of G
od

where low (   ) >u       v

Time Bounds:

Each edge and vertex can be associated
with 0(1) operations.  So time O(|V|+|E|).
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Depth first search tree T of Directed Graph
G = (V,E)

 1

 2

 3

 4

 5

 6

 7  8

fo
rw

a
rd

c
y

c
le

c
y

c
le

cross

c
ro

s
s

cross

8

7

 64

1

2

3

5

i= DFS number

 v
i i = postorder

= order vertex
 popped off

DFS stack

edge set E partitioned:
edge  (u,v)  is

 t r ee  ed ge    i f   u  ÆÆÆÆ    v  i n  T
 cy c l e  ed ge    i f   v ÆÆÆÆ****     u
 f or war d  ed ge    i f   ( u ,v)  œœœœ    T

but    u  ÆÆÆÆ****     v i n  T

 cr os s  ed ge     ot herwi s e
{
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Digraph  G = (V,E) is acylic  if it has no cycles

Topological Order

  V = {v 1  ,..., v n }  satisfies
(v i , v j) eeee E fifififi  i < j

   

Lemma 
G is acylic iff   $$$$ no cycle edge
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Suppose (u,v) eeee E is a cycle edge,

tree edges from   v to u.  Then (u,v),  
 e 1 ,...,e k is a cycle.

Next suppose there is no cycle edge.

Then order vertices in postorder
of DFS spanning forest (i.e., in order  

 vertices are popped off DFS stack).   
 This is a reverse topological order  of G.

 
  

So G can have no cycles.

s o v ÆÆÆÆ****     u.   But  l e t  e 1  , . . . ,  e k be  t he

proof

Note: Gives an O(|V|+|E|) algorithm
for computing Topological Ordering
of an acyclic graph   G = (V,E),
(Knuth).

2 6

Directed Graph     G = (V,E)

 1

 2

 3

 4

 5

 7

 6

 8

Strong Component 

maximum set vertices

S of V    such that     """" u,v eeee S

$$$$  cycle containing u,v

Collapsed Graph 

 G* derived by
collapsing each strong component
into a single vertex.

note    G* is acyclic.
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(due to Kosaraju)

Algorithm  
Strong Components

Input  digraph   G

  [1] Perform DFS on G.  Renumber
  vertices by postorder.

  [2] Let G -  by digraph derived
  from G by reversing direction of
  each edge.

  [3] Perform DFS on G - , starting
  at highest numbered vertex.

  Output resulting DFS tree of G -

  as a strongly connected component
  of G.

  [4] repeat [3], starting at highest
  numbered vertex not so for
  visited (halt when all vertices visited)

 Time Bounds  
 each DFS costs time O(|V|+|E|) 

 fifififi   total time   O(|V|+|E|).
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Example

1
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4
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8

1

2

3

4

5

6

7

8
1

2

3

4

5

6

7

8

G

G
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Theorem
The Algorithm outputs the
strong components of G.

We must show these are exactly the
vertices in each DFS spanning forest of G -

 Suppose
v,w in the same strong component
and DFS search in G -  starts at vertex r
and reaches v.  Then w will also be

 
 

reached.  So  v,w  are output together
in same spanning tree of G -.

Suppose
v,w output in same spanning tree
of G .- Let r be the root of that

 
 

spanning tree.  Then $$$$  paths in G -

 
 

from r to each of v and w.
So there exists paths in G to r from
each of v and w.  Suppose no path
in G to r from v.  Then since r has a
higher postorder than v, there is no path
in G from v to r, a contradiction.  Hence  $$$$
path in G from r to v, and similar  

 argument gives path from r to w.  Hence,
v and w are in a cycle of G, so must be in
the same strong component.

proof


