Algorithms

Professor John Reif

ALG 5.1

Graph Algorithms using Depth First Search:

(a) Graph Definitions
(b) DFS of Graphs
(c) Biconnected Components
(d) DFS of Digraphs
(e) Strongly Connected Components

Main Reading Selections: CLR, Chapter 23
Auxillary Reading Selections:
AHU-Design, Sections 5.2-5.5 AHU-Data, Chapters 6 and 7 BB, Chapter 6

Graph Terminology

graph	G $=(\mathrm{V}, \mathrm{E})$
vertex set	V
edge set	E pairs of vertices
which are adjacent	

G directed if edges ordered pairs (u,v)

G undirected if edges unordered pairs $\{\mathbf{u}, \mathbf{v}\}$

proper graph:
no loops
no multi-edges
Subgraph \mathbf{G}^{\prime} of \mathbf{G}
$\mathbf{G}^{\prime}=\left(\mathbf{V}^{\prime}, \mathbf{E}^{\prime}\right)$ where
V^{\prime} is a subset of V, E^{\prime} is a subset of E


```
p is a sequence of vertices \mp@subsup{v}{0}{\prime},\mp@subsup{v}{1}{},\ldots,v
    where for i=1,\ldots, k, v
```

Equivalently,
p is a sequence of edges $e_{1, \ldots, e_{k}}$ where for $i=2, \ldots, k$ edges e_{i-1}, e_{i} share a vertex

simple path \quad| no edge or vertex repeated, |
| :--- |
| except possibly $\mathbf{v}_{\mathbf{o}}=\mathbf{v}_{\mathbf{k}}$ |

cycle is a path \mathbf{p} with $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$ where $\mathrm{k}>1$

Connectivity of Undirected Graphs

G is connected if \exists path between each pair of vertices

else G has $\quad \geq 2$ connected components: maximal connected subgraphs

Graph Representation

G is biconnected if \exists two disjoint paths between each pair of vertices

Adjacency Matrix A

```
    A is size n x n
A(i,j)={}{\begin{array}{ll}{1}&{(i,j)\varepsilonE}\\{0}&{\mathrm{ else }}
space cost n}\mp@subsup{}{}{2}-
```

$\operatorname{Adj}(1), \ldots, \operatorname{Adj}(\mathrm{n})$
$\operatorname{Adj}(\mathrm{v})=$ list of vertices adjacent to v

space cost $O(n+m)$

Tree
T is graph with unique path
between every pair of vertices

Directed Tree

T is digraph with distinguished vertex root \mathbf{r} such that each vertex reachable from r by a unique path

Family Relationships:

- ancesters
- descendants

Ordered Tree
is a directed tree with
siblings ordered

Forest
set of Trees

- parent
- child
- siblings

Preorder
A,B,C,D,E,F,H,I
[1] root (order vertices as pushed on stack)
[2] preorder left subtree
[3] preorder right subtree

Postorder B,E,D,H,I,F,C,A
[1] postorder left subtree
[2] postorder right subtree
[3] root
(order vertices as popped off stack)
In order B,A,E,D,C,H,F,I
[1] inorder left subtree
[2] root
[3] inorder right subtree

T is a spanning tree of graph G if
(1) T is a directed tree with the same vertex set as \mathbf{G}
(2) each edge of \mathbf{T} is a directed version of an edge of \mathbf{G}

an edge (u, v) of G-T is backedge if \mathbf{u} is a descendant or ancester of \mathbf{v}. else (u, v) is a crossedge

Spanning Forest:
forest of spanning trees of connected components of G

Tarjan's Algorithm Depth First Search

```
Input graph G =(V,E) represented by
    adjacency lists Adj(v) for each v &V
\([0] \mathrm{N} \longleftarrow 0\)
[1] for all \(\mathrm{v} \varepsilon \mathrm{E}\) do (number (v) \(\leftarrow 0\) children (v) \(\leftarrow())\) od
```

[2] for all v ε V do
if number (v)=0 then DFS(v)
[3] output spanning forest defined by children

```
recursive procedure DFS(v)
    [1] N \leftarrowN+1; number (v) \leftarrowN
    [2] for each u \varepsilon Adj(v) do
        if number(u)=0 then
        (add u to children (v); DFS(u))
```

input size $n=|V|, m=|E|$

Sup. we preorder number a tree T Let $D_{v}=\#$ of descendants of v

Lemma

\boldsymbol{u} is descendant of \boldsymbol{v}
iff $v \leq u<v+D_{v}$

Lemma

If u is descendant of v and (u, w) is back edge s.t. $w<v$ then \boldsymbol{w} is a proper ancestor of v

Depth First Search Tree T

```
u }->\mathbf{v}\mathrm{ iff (u,v) is tree edge of T
u \xrightarrow{}{*}v
u---v iff (u,v) is backedge if (u,v) \varepsilonG-T
    with either u \xrightarrow{}{*}v}\mathbf{v}\mathrm{ or v }\xrightarrow{}{*}\mathbf{u
```

note DFS tree T has no cross edges

will number vertices by order visited in DFS (preorder of T)

example
figure gives $\mathbf{v}[\operatorname{low}(v)]$
For each vertex v ,
define $\operatorname{low}(\mathrm{v})=\min (\{\mathrm{v}\} \cup\{\mathrm{w} \mid \mathrm{v} \xrightarrow{*}---\mathrm{w}\})$
can prove by induction:
Lemma $\operatorname{low}(v)=\min (\{v\} \cup\{\operatorname{low}(w) \mid v \rightarrow w\} \cup\{w \mid v---w\})$
can easily be computed during DFS
in postorder.

G is Biconnected
 iff either

(1) G is a single edge, or

The intersection of two biconnected components consists of at most one vertex, called an Articulation Point.
(2) for each triple of vertices u, v, w

```
\(\exists \mathrm{w}\)-avoiding path from \(\mathbf{u}\) to v
(equivalently:
\(\exists\) two disjoint paths from u to v)
```

Biconnected Components
maximal subgraphs
of G which are biconnected.

Example 1, 2, 5 are articulation points
If can find articulation points
then can compute biconnected components:
Method during DFS, use auxillary stack to store visited edges. Each time we complete the DFS of a tree child of an articulation point, pop all stacked edges currently in stack (these form a biconnected component) up to that tree edge.

Characterization

```
Theorem
    a is an articulation point iff either
        (1) }a\mathrm{ is root with }\geq2\mathrm{ tree children
        or
        (2) }a\mathrm{ is not root but a has
        a tree child v with low(v) \geqa
    ( note easy to check given low computed)
```


proof

The conditions are sufficient since any a-avoiding path from v remains in the
subtree T_{v} rooted at v , if v is a child of a

To show condition necessary , assume a is an articulation point.

```
Case(1)
If \(a\) is a root and is articulation point, \(a\) must have \(\geq \mathbf{2}\) tree edges to two distinct biconnected components.
```


Case(2) If a is not root, consider graph G- $\{a\}$ which must have a connected component \mathbf{C} consisting of only descendants of a, and with no backedge from C to an ancestor of v. Hence a has a tree child v in C and low (v) $\geq a$

Case (2)

Theorem

The Biconnected Components of $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ can be computed in time $\mathbf{O}(|\mathbf{V}|+|\mathbf{E}|)$ using a RAM

proof

Summary of Algorithm:

[0] initialize a STACK to empty
During a DFS traversal do
[1] add visited edge to STACK
[2] compute low of visited vertex \mathbf{v} using Lemma
[3] test if v is an articulation point
[4] if so, for each u ε children(v) in order where low (u) $\geq v$
do pop all edges in STACK
upto and including tree edge (\mathbf{v}, u) output these edges as a
biconnected component of G od

Time Bounds:

Each edge and vertex can be associated with $\mathbf{0}(1)$ operations. So time $\mathbf{O}(|\mathbf{V}|+|\mathbf{E}|)$.

Digraph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ is acylic if it has no cycles

> Topological Order
> $\left.\begin{array}{l}\mathbf{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}\end{array}\right\}$ satisfies
> $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right) \in \mathbf{E} \underset{\mathrm{E}}{\Rightarrow} \mathrm{i}<\mathbf{j}$

Lemma

G is acylic iff \exists no cycle edge

proof

Suppose (\mathbf{u}, v) $\varepsilon \mathrm{E}$ is a cycle edge, sov $\xrightarrow{*} u$. But let e_{1}, \ldots, e_{k} be the tree edges from v to u. Then (u, v), $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}$ is a cycle.

Next suppose there is no cycle edge.

Then order vertices in postorder of DFS spanning forest (i.e., in order vertices are popped off DFS stack).
This is areverse topological order of G.
So G can have no cycles.

```
Note: Gives an O(|V|+|E|) algorithm
        for computing Topological Ordering
        of an acyclic graph G}=(V,E)
        (Knuth).
```

Directed Graph G $=(\mathbf{V}, \mathbf{E})$

Strong Component

maximum set vertices
S of V such that $\quad \forall u, v \in S$
ヨ cycle containing u, v

Collapsed Graph

G* derived by
collapsing each strong component into a single vertex.

note

G^{*} is acyclic.
(due to Kosaraju)

Algorithm

Strong Components

Input digraph G

[1] Perform DFS on G. Renumber vertices by postorder.
[2] Let G^{-}by digraph derived from G by reversing direction of each edge.
[3] Perform DFS on G ${ }^{-}$, starting at highest numbered vertex.
Output resulting DFS tree of G^{-} as a strongly connected component of G.
[4] repeat [3], starting at highest numbered vertex not so for visited (halt when all vertices visited)

```
Time Bounds
    each DFS costs time O(|V|+|E|)
    total time O(|V|+|E|).
```


Theorem

The Algorithm outputs the
strong components of G.

proof

We must show these are exactly the vertices in each DFS spanning forest of G Suppose
v, w in the same strong component and DFS search in G^{-}starts at vertex r and reaches v . Then w will also be reached. So v, w are output together in same spanning tree of \mathbf{G}.
Suppose
v,w output in same spanning tree of \mathbf{G}^{-}. Let r be the root of that spanning tree. Then $\quad \exists$ paths in G^{-} from r to each of v and w. So there exists paths in \mathbf{G} to r from each of v and w. Suppose no path in G to r from v. Then since r has a higher postorder than v, there is no path in G from v to r, a contradiction. Hence ヨ path in G from r to v , and similar argument gives path from r to w. Hence, v and w are in a cycle of G , so must be in the same strong component.

