ALG 5.1

Graph Algorithmsusing
Depth First Search:

(@) Graph Definitions

(b) DFSof Graphs

(c) Biconnected Components

(d) DFSof Digraphs

(e) Strongly Connected Components

Graph Terminology

G =(V,E)
Vv

E pairsof vertices
which ar e adjacent

Main Reading Selections:
CLR, Chapter 23

Auxillary Reading Selections:

AHU-Design, Sections 5.2-5.5
AHU-Data, Chapters6 and 7
BB, Chapter 6

G directed if edgesordered pairs(u,v)
-0

G undirected if edgesunordered pairs{u,v}

o ©

proper graph:
no loops

no multi-edges o »

Subgraph G of G

G =(V', E') where
V'isasubset of V, E'isasubset of E

Connectivity of Undirected Graphs

p isa sequence of vertices v ,, v
wherefor i=1,..,k,v ,, isadjacenttov

AP

-

Gis connected if 3 path between

pisasequenceof edges e ,,...e each pair of vertices
wherefor i=2,....k edgese _ , e shareavertex

Equivalently,

simple path no edge or vertex repeated,
except possibly v =v

elseGhas =2 connected compc;nents:
maximal connected subgraphs

G is biconnected

if 3 two digoint paths

between each pair of vertices

(or Gis single edge)

Graph Representation

graph G =(V,E)
n = |V| =# vertices

00000m = |E| = # edges e

' Adjacency Matrix A

Aissizen xn

A) = { 1 (ij)eE

0 else

spacecost n % - n

Adjacency Lists Adj(D), ..., Adj (n)

Adj(v) = list of verticesadjacent tov

1

gpacecost O(n+m)

Tree

T isgraph with unique path
between every pair of vertices

n = # vertices

n-1=# edges /|\

T isdigraph with
distinguished vertex

r such that each
vertex reachablefrom r
by a unique path

Family Relationships:
-Uancesters
-[descendants

-Uparent

-Ochild
-Osiblings

Ordered Tree

isadirected tree with
siblings ordered

Forest
set of Trees

Ordered
Tree Traversals

Preorder A,B,C,D,E,F,H,I

[1] root (order vertices as pushed on stack)
[2] preorder left subtree

[3] preorder right subtree

Postorder B,E,D,H,I,F,C A
[1] postorder left subtree
[2] postorder right subtree

[3] root
(order vertices as popped off stack)
In order B,A,E,D,C,H,F,I
[1] inorder left subtree
[2] root

[3] inorder right subtree

10

spanning tree

(1) T isadirected treewith the
samevertex set asG

(2) each edge of T isa directed version
of an edge of G

backedge

crossedge

Spanning Forest:

forest of spanning trees
of connected components of G

11

Tarjan's Algorithm
Depth First Search

graph G =(V,E) represented by
adjacency lists Adj(v) for eachv &V
[O]N <0
[1] forall v €V do (number (V) «0

children (v) «()) od
[2] forall v eV do
If number (vV)=0 then DFS(v)
[3] spanning forest defined by children

recursive procedure DFS(v)
[1] N « N+1; number (v) «N

[2] for each u € Adj(v) do

if number(u) =0 then
(add u to children (v); DFS(u))

12

input size n=|V|,m=|E|

Theorem Depth First Search takestotal time
cost O(n+m)

proof
can associate with each edge and vertex
a constant number of operations.

13

Sup. we preorder number a tree T
Let D, = # of descendants of Vv

U isdescendant of v
iff vSu<v+D,

If U is descendant of Vv

and (u,w) is back edge st.w<v
then W is a proper ancestor of Vv

14

Depth First Search Tree T
u-v Iiff (u,v)istreeedgeof T
u-Sv iff uisan ancester of v

u---v iff (u,v) is backedgeif (u,v) eGT

with either u=v or v Su

note no

/\

will number vertices by order
visited in DFS (preorder of T)

15

A

number vertices
by DFS number

figure gives v[low(V)]

For each vertex v,

\ define low(v) =min({v} u{w|v 5--- w})

can prove by induction:

Lemma low(v)=min({v} u{low(w)|vow} u{w|v---w})

can easily be computed during DFS
in postorder.

16

<

Biconnected
(1) Gisasingle edge, or
(2) for each triple of vertices u,v,w

3 w-avoiding path from u tov

(equivalently: 3 two digoint pathsfrom u tov)

Biconnected Components
maximal subgraphs
of G which are biconnected.

17

[Theinter section of two biconnected
components consists of at most one vertex,
called an Articulation Point.

Example 1, 2, 5 are articulation points
"1f can find articulation points
then can compute biconnected components:

Method during DFS, use auxillary stack
to storevisited edges. Each time

we complete the DFS of a tree child of
an articulation point, pop all stacked
edges currently in stack (theseform
| a biconnected component) up to that tree edge.

18

| Characterization |

Theorem

aisan articulation point iff either

(note easy to check given low computed)

(1) aisrootwith >2treechildren
or

(2) aisnotroot but ahas
atreechild vwith low(v) = a

19

| proof

The conditionsare sufficient since any
a-avoiding path from v remainsin the
subtree T v rooted at v, if visachild of a

To show condition ,assume ais
an articulation point.

Case(1) . N]
If aisaroot and isarticulation point,
a must have =2 treeedgestotwo distinct
biconnected components.

Case(?) |f gisnot root, consider graph G- {&}
which must have a connected component C
consisting of only descendants of a, and

with no backedge from C to an ancestor
of v. Hencea hasatreechildvin C and
low (v) = a

20

Theorem

The Biconnected Components
of G = (V,E) can be computed
in time O(|V|+|E|) using a RAM

7 proof

Summary of Algorithm:

[0] initializea STACK to empty
During aDFStraversal do
[1] add visited edgeto STACK

[2] compute low of visited vertex v
using Lemma
[3] test if visan articulation point

Articulation Point a

is not theroot

[4] if so, for each u €children(v) in order
wherelow (u) > v

do pop all edgesin STACK
upto and including tree edge (v,u)
output theseedgesasa
biconnected component of G
od

Time Bounds;

Each edge and vertex can be associated
with 0(1) operations. Sotime O(|V[+|E]).

21 22

Depth first search tree T of Directed Graph

G =(V.E)

° = @ i= DFS number

© //

= R _

o \ v) i = postorder
4 \ = order vertex
| @ \ ~(<) popped off
i o

[} / \ > DFS stack

- ‘s\,u*,ke\
N\
v
»/ :

edge (u,v) is

NN
b
%

Cross -

treeedge if u-v inT
cycle edge if v Su

forward edge if (u,v) ¢T
but uSvinT

cross edge otherwise

23

edge set E partitioned:

Digraph G =(V,E)is acylic if it hasnocycles

{v 1V n} satisfies
(v, ,Vj) eE > i<j

Lemma
G isacyliciff d no cycle edge

24

Suppose (u,v) e€Eisacycleedge,

sov Su. Butlete,,.. e bethe
treeedgesfrom vtou. Then (u,v),
el,...,ekisacycle.

Next suppose thereisno cycle edge.

Then order verticesin postorder
of DFS spanning forest (i.e., in order
vertices are popped off DFS stack).

Thisis aeverse topological order of G.

So G can have no cycles.

Note:

Givesan O(|V|+|E|) algorithm

for computing Topological Ordering
of an acyclicgraph G =(V,E),
(Knuth).

25

Directed Graph G =(V,B)

Strong Component
maximum set vertices
Sof V suchthat Vu,v €S

= cycle containing u,v

G* derived by
collapsing each strong component
into asingle vertex.

G* isacyclic.

26

(due to Kosaraju)

Algorithm
Strong Components

Input digraph G

[1] Perform DFSon G. Renumber
vertices by postorder.

[2] Let G~ by digraph derived
from G by reversing direction of
each edge.

[3] Perform DFSon G ", starting

at highest numbered vertex.

Output resulting DFStreeof G~
as a strongly connected component
of G.

[4] repeat [3], starting at highest
numbered vertex not so for
visited (halt when all vertices visited)

Time Bounds
each DFS coststime O(|V|+|E|)

= total time O(|V|+|E|).

27

28

Theorem
The Algorithm outputsthe
strong components of G.

We must show these ar e exactly the
verticesin each DFS spanning forest of G
Suppose
V,w in the same strong component
and DFSsearchin G ~ startsat vertexr
and reachesv. Then w will also be
reached. So v,w areoutput together
in same spanning tree of G .
Suppose _ _
V,W output in same spanning tree
of G. Letr betheroot of that
spanningtree. Then = pathsin G -
from r to each of v and w.
So there existspathsin G tor from
each of v and w. Suppose no path
inGtor fromv. Thensincer hasa
higher postorder than v, thereisno path
in G from v tor, acontradiction. Hence
path in G from r tov, and similar
argument gives path fromr tow. Hence,
vand w arein acycleof G, so must bein
the same strong component.

29

