Algorithms
Professor John Reif

ALG 5.2

Breadth-First Search of Graphs:

(a) Single Source Shortest Path(b) Graph Matching

Main Reading Selections: CLR, Chapter 25

Auxillary Reading Selections: AHU-Design, Sections 5.6-5.10 AHU-Data, Sections 6.3-6.4 Handouts: "Matchings" and "Path-Finding Problems"

undirected graph G = (V,E)input with root r εV initialize: $L \leftarrow 0$ for each $\mathbf{\varepsilon}$ V do visit(v) \leftarrow false LEVEL(0) \leftarrow {r}; visit (r) \leftarrow true while LEVEL(L) \neq {} do begin $\text{LEVEL}(L+1) \leftarrow \{\}$ for each v ε LEVEL(L) do begin for each $\{v,u\} \in E$ s.t. not visit (u)do add u to LEVEL(L+1) visit (u) \leftarrow true od

Breadth First Search

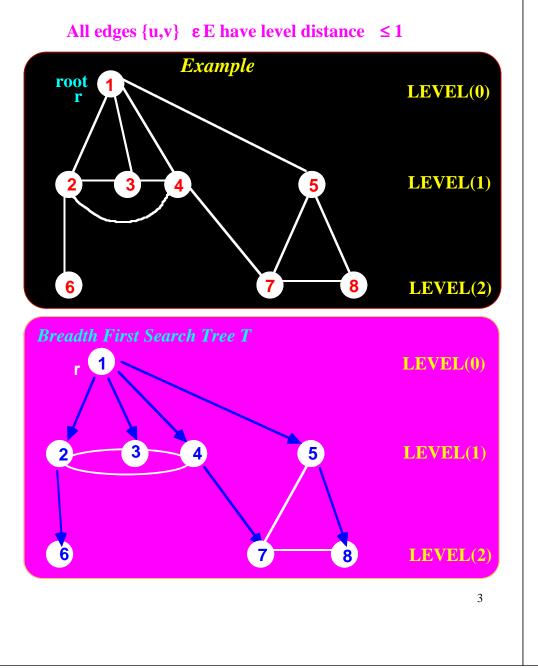
 $L \leftarrow L+1$ end

end

Algorithm

output LEVEL(0), LEVEL(1), ..., LEVEL(L - 1) O(|V|+|E|) time cost

1



Single Source Shortest Paths Problem

```
input
digraph G=(V,E) with root r \in V
weighting d:E \rightarrow positive reals
```

Dijkstra's Greedy algorithm

(initialize: $\mathbf{O} \leftarrow \{\}$

```
for each v \in V - \{r\} do D(v) \leftarrow \infty
D(r) \leftarrow 0
until no change do
choose a vertex u \in V - Q
with minimum D(u)
add u to Q
for each (u,v) \in E \text{ s.t. } v \in V - Q do
D(v) \leftarrow \min(D(v), D(u) + d(u,v))
output \quad \forall v \in V
D(v) = weight of min. path from r to v
```



Q	u	D(1)	D(2)	D(3)	D(4)	D (5)
Φ	1	0	00	00	00	00
{1 }	2	0	10	30	80	100
{1,2}	3	0	10	30	60	100
{1,2,3}	4	0	10	30	50	100
{1,2,3,4}	5	0	10	30	50	90

proof of Dijkstra's Algorithm

use induction hypothesis:

(1) ∀ v ε V,
D(v) is *weight* of the minimum cost of path p from r to v, where p visits only vertices of Q ∪ {v}
(2) ∀ v ε Q,

D(v) = minimum cost path from r to v

basis $\mathbf{D}(\mathbf{r}) = \mathbf{0}$ for $\mathbf{Q} = \{\mathbf{r}\}$

induction step

if D(u) is minimum for all u ε V-Q

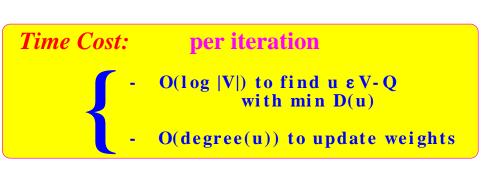
then *claim*:

(1) D(u) is minimum cost of path from r to u in G

suppose not: then path p with weight < D(u) and such that p visits a vertex w $\varepsilon V \cdot (Q \cup \{u\})$. Then D(w) < D(u), contradiction.

7

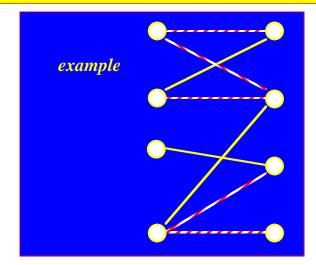
(2) is satisfied by $D(v) = \min (D(v), D(u) + d(u, v))$ for $\forall v \in Q \cup \{u\}^{(u,v) \in E}$



Since there are |V| iterations, *Total Time* O(|V|(log |V|) + |E|)

Graph G = (V,E)

matching M is a subset of E satisfies if e_1 , e_2 distinct edges in M *Then* they have no vertex in common



Graph Matching Problem: Find a maximum size matching Let G = (V,E) have matching M

goal: find a larger matching

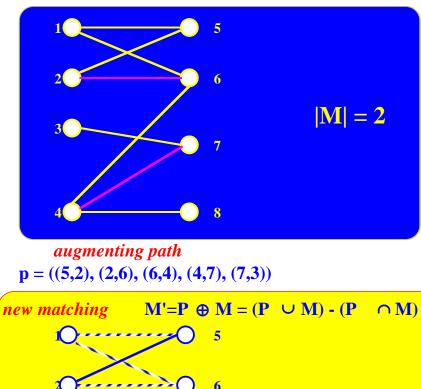
definitions **vertex v is** *matched* **if v is in an edge of M**

An augmenting path $\mathbf{p}=(\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_k)$

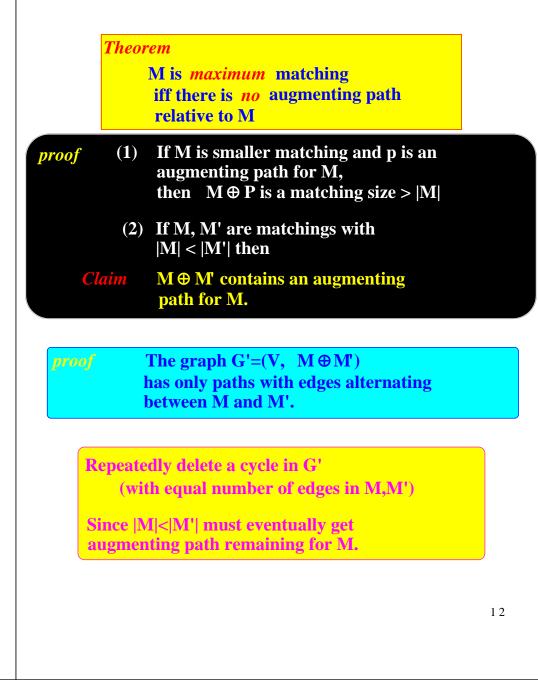
require

$$e_1, e_3, e_5, \dots, e_k \in E-M$$

 $e_2, e_4, \dots e_{k-1} \in M$



 $|\mathbf{P} \oplus \mathbf{M}| = 3$



Algorithm Maximum Matching

input graph G=(V,E)

- [1] $M \leftarrow \{\}$
- [2] *while* there exists an augmenting path p relative to M
 - $do \quad \mathbf{M} \leftarrow \mathbf{M} \oplus \mathbf{P}$
- [3] *output* maximum matching M

Remaining problem: Find augmenting path Assume *weighting* $d:E \rightarrow R^+ = pos$, reals.

Theorem

Let M be maximum weight among matchings of size |M|. Let p be an augmenting path for M of maximum weight. Then matching M⊕P is of maximum weight among matchings of size |M|+1.

proof

Let M' be any maximum weight matching of size |M|+1. Consider the graph G'=(V, $M \oplus M'$). Then the maximum weight augmenting path p in G' can be shown to give a matching $M \oplus P$ of the same weight as M'. Assume G is bipartite graph with matching M

Use Breadth-First Search:

LEVEL(0) = some unmatched vertex r

for odd L > 0,

LEVEL(L) = {u | {v,u} & E-M when v & LEVEL(L-1) and u in no lower level}

for even L > 0

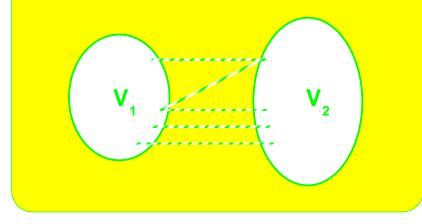
LEVEL(L) = {u | {v,u} e M where ve LEVEL(L-1) and u in no lower level}

Cases

(1) If for some odd L>0, LEVEL(L) contains an unmatched vertex u then the Breadth First Search tree T has an augmenting path from r to u

(2) Otherwise no augmenting path exists, so M is maximal.

 $V = V_1 \cup V_2 \quad , \quad V_1 \cap V_2 = \Phi$ E is a subset of { {u,v} | u \in V_1 , v \in V_2 }



Theorem

If G=(V,E) is a bipartite graph, then the maximum matching can be constructed in O(|V||E|) time.

proof

Each stage requires O(|E|) time for time for Breadth First Search construction of augmenting path.

Generalizations:

- (1) Compute Edge Weighted Maximum Matching
- (2) Edmonds gives a polynomial time

algorithm for maximum matching of

any graph

Let M be matching in general graph G

Fix *starting vertex* r unmatched vertex

Let vertex v ε V be *even* if

∃ even length augmenting path from **r** to **v**

and odd if

∃ odd length augmenting path from r to v.

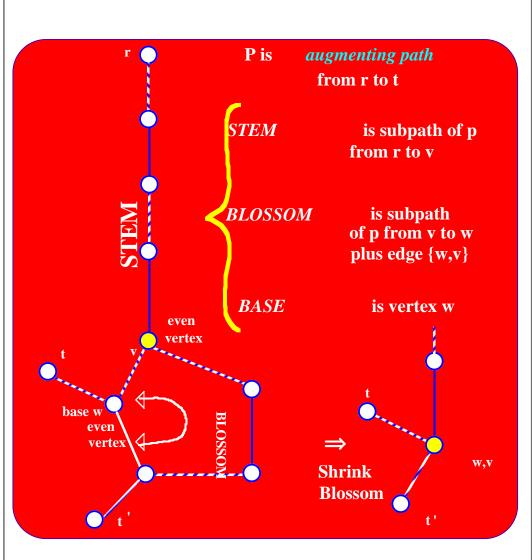
Case

G is bipartite

 \Rightarrow *no* vertex is both even and odd

Case

- G is not bipartite
- ⇒ some vertices may be both even and odd!



Theorem

If G' is formed from G by shrinking of blossom B, then G contains an augmenting path iff G' does.

proof

- (1) If G' contains an augmenting path p,
 then if p visits blossom B we can insert an
 augmenting subpath p' within blossom into
 p to get a new augmenting path p for G
- (2) If *G* contains an augmenting path, then apply Edmond's blossom shrinking algorithm to find an *augmenting path in G'*.

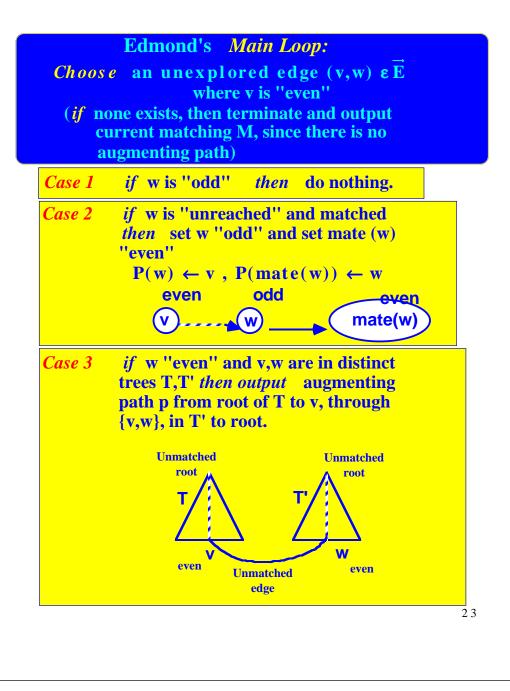
Edmond's Blossom Shrinking Algorithm input Graph G=(V,E) with matching M initialization $\vec{E} = \{(v,w),(w,v) \mid \{v,w\} \in E\}$

comment Edmond's algorithm will construct a forest of trees whose paths are partial augmenting paths

Note: We will let P(v) = parent of vertex v

[0] for each unmatched vertex vεV do label vas "even"

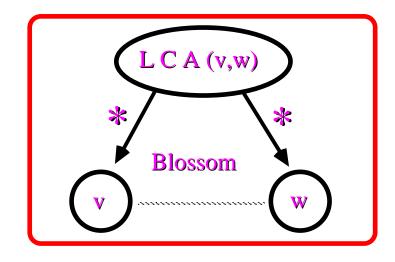
[1] for each matched v & V do
 label v "unreached"
 set p(v) = null
 if v is matched to edge {v,w}
 then mate (v) ← w
 od



Case 4 w is "even" and v,w in same tree T then {v,w} forms a blossom B containing all vertices which are

both (i) a descendant of LCA(v,w) and (ii) an ancester of v or w

where LCA(v,w) = least common ancester of v,w in T



Shrink all vertices of B to a single vertex b. Define p(b) = p(LCA(v,w))and p(x) = b for all $x \in B$

Lemma

Edmond's blossom-shrinking algorithm succeeds iff an augmenting path in G

proof

Uses an induction on blossom shrinking stages

Time Bounds : $O(n^4)$.

[1] [Gabow and Tarjan] show

Can implement in *time O(nm)* all O(n) stages of matching algorithms taking O(m) time per stage for blossom shrinking

[2] [Micali and Vazirani] reduce time to $O(\sqrt{n}m)$ for unweighted matching in general graphs.

(Idea: Use *network flow* to get augmented paths).