
1

Algorithms
Professor John Reif

ALG 5.2

Breadth-First Search
of Graphs:

(a) Single Source Shortest Path
(b) Graph Matching

Main Reading Selections:
 CLR, Chapter 25

 Auxillary Reading Selections:

AHU-Design, Sections 5.6-5.10
AHU-Data, Sections 6.3-6.4

 Handouts: "Matchings" and
 "Path-Finding Problems"

2

Breadth First SearchAlgorithm

input undirected graph G = (V,E)
 with root r eeee V

initialize: L ¨̈̈̈ 0

for each v eeee V do visit(v) ¨̈̈̈ false

LEVEL(0) ¨̈̈̈ {r} ; visit (r) ¨̈̈̈ true

while LEVEL(L) ππππ {{{{}}}} do

begin
LEVEL(L+1) ¨̈̈̈ {{{{}}}}

 for each v eeee LEVEL(L) do
begin

for each {v,u} eeee E s.t. not visit (u)
do
add u to LEVEL(L+1)
visit (u) ¨̈̈̈ true
od

end
L ¨̈̈̈ L+1

end

output LEVEL(0), LEVEL(1), ..., LEVEL(L - 1)
 O(|V|+|E|) time cost

3

All edges {u,v} eeee E have level distance ££££ 1

Example
 1

 2 3 4 5

 6 8

root
r LEVEL(0)

LEVEL(1)

LEVEL(2) 7

 1

 5

 6 8

r

 7

 3 4 2

LEVEL(0)

LEVEL(1)

LEVEL(2)

Breadth First Search Tree T

4

Single Source Shortest Paths Problem

input
 digraph G=(V,E) with root r eeee V
 weighting d:E ÆÆÆÆ positive reals

Dijkstra's Greedy algorithm

initialize:
Q ¨̈̈̈ {{{{}}}}
for each v eeee V-{r} do D(v) ¨̈̈̈ ••••
D(r) ¨̈̈̈ 0
until no change do

choose a vertex u eeee V-Q
with minimum D(u)

add u to Q
for each (u,v) eeee E s.t. v eeee V-Q do

D(v) ¨̈̈̈ min(D(v), D(u) + d(u,v))
output

"""" v eeee V

D(v) = weight of min. path from r to v

5

example

 1

 2 3

root r

10
30

50
20

40

100

 4

 5

Q u D(1) D(2) D(3) D(4) D(5)

FFFF 1 0 •••• •••• •••• ••••

 {1} 2 0 10 30 •••• 100

 {1,2} 3 0 10 30 60 100

 {1,2,3} 4 0 10 30 50 100

 {1,2,3,4} 5 0 10 30 50 90

6

proof of Dijkstra's Algorithm

use induction hypothesis:

 basis D(r) = 0 for Q={r}
{

 (1) """" v eeee V,
D(v) i s wei ght of t he mi ni mum cos t of
pat h p f rom r t o v, where p vi s i t s
onl y ver t i ces of Q »»»» {v}

 (2) """" v eeee Q,
D(v) = mi ni mum cos t pat h f rom r t o v

7

induction step

if D(u) is minimum for all u eeee V-Q

then claim:

 (1) D(u) is minimum cost of path from r to u in G

suppose not: then path p with
 weight < D(u) and such that p visits
 a vertex w eeee V-(Q »»»» {u}). Then
 D(w) < D(u) , contradiction.

 (2) is satisfied by D(v) = min (D(v),D(u)+d(u,v))

(u,v) eeee Efor """" v eeee Q »»»»{u}

8

Time Cost: per iteration

{ - O(l og |V|) t o f i nd u eeee V- Q
wi t h mi n D(u)

 - O(degree (u)) t o updat e we i ght s

Since there are |V| iterations,

Total Time O(|V|(log |V|) + |E|)

9

Graph G = (V,E)

matching M is a subset of E satisfies

if e 1
, e 2 distinct edges in M

Then they have no vertex in common

example

Graph Matching Problem:
 Find a maximum size matching

1 0

Let G = (V,E) have matching M

goal: find a larger matching

definitions
 vertex v is matched if

v is in an edge of M

An augmenting path p=(e 1 , e 2 ,..., e k)

requi re{
begi ns and ends at

unmat ched

ver t i ces
e

1
, e

3
, e

5
 , . . . , e

k
 eeee E- M

e
2
, e

4
 , . . . e

k - 1
 eeee M

1 1

initial matching M in G

1

2

5

6

3
7

4 8

|M| = 2

augmenting path
p = ((5,2), (2,6), (6,4), (4,7), (7,3))

new matching M'=P ≈≈≈≈ M = (P »»»» M) - (P «««« M)
1

2

5

6

3
7

4 8

≈≈≈≈|P M| = 3

1 2

Theorem

 M is maximum matching
iff there is no augmenting path
relative to M

proof (1) If M is smaller matching and p is an

augmenting path for M,

then M ≈≈≈≈ P is a matching size > |M|

(2) If M, M' are matchings with
|M| < |M'| then

Claim

M ≈≈≈≈ M' contains an augmenting
path for M.

proof The graph G'=(V, M ≈≈≈≈ M')
has only paths with edges alternating
between M and M'.

Repeatedly delete a cycle in G'
(with equal number of edges in M,M')

Since |M|<|M'| must eventually get
augmenting path remaining for M.

1 3

Algorithm Maximum Matching

input graph G=(V,E)

[1] M ¨̈̈̈ {{{{}}}}

[2] while there exists an augmenting
path p relative to M

do M ¨̈̈̈ M ≈≈≈≈ P

[3] output maximum matching M

Remaining problem:
Find augmenting path

1 4

Assume weighting d:E ÆÆÆÆ R + = pos. reals.

Theorem
Let M be maximum weight among
matchings of size |M|. Let p be an

 augmenting path for M of maximum
 weight. Then matching M ≈≈≈≈ P is of

 maximum weight among matchings of
 size |M|+1.

proof
 Let M' be any maximum weight

 matching of size |M|+1. Consider the
graph G'=(V, M ≈≈≈≈ M'). Then the maximum
weight augmenting path p in G' can be
shown to give a matching M ≈≈≈≈ P of the
same weight as M'.

1 5

Assume G is bi par t i t e graph
with matching M

Use Breadt h- Fi r s t Search:

 LEVEL(0) = some unmatched vertex r

for odd L > 0,

LEVEL(L) = {u | {v,u} eeee E-M
 when v eeee LEVEL(L-1)
 and u in no lower level}

for even L > 0

LEVEL(L) = {u | {v,u} eeee M
 where v eeee LEVEL(L-1)

 and u in no lower level}

1 6

Cases
(1) If for some odd L>0,

 LEVEL(L) contains an unmatched vertex u
 then the Breadth First Search tree T has
 an augmenting path from r to u

(2) Otherwise no augmenting path exists, so
M is maximal.

1 7

Bipartite Graph G=(V,E)

V = V
1
 »»»» V

2
 , V

1
 «««« V

2
 = FFFF

E i s a s ubs e t of { {u ,v} | u eeee V
1
 , v eeee V

2
}

V
1

V
2

1 8

Theorem

If G=(V,E) is a bipartite graph,
then the maximum matching can be
constructed in O(|V||E|) time.

proof

Each stage requires O(|E|) time for
time for Breadth First Search construction

 of augmenting path.

Generalizations:

{
(1) Comput e Edge Wei ght ed Max i mum

 Mat chi ng

(2) Edmonds gi ves a pol y nomi al t i me

 al gor i t hm f or max i mum mat chi ng of

 any graph

1 9

Let M be matching in general graph G

Fix s t ar t i ng ver t ex r
unmatched vertex

Let vertex v eeee V be even if

$$$$ even length augmenting path from r to v

and odd if

 $$$$ odd length augmenting path from r to v.

Case

 G is bipartite

 fifififi

no vertex is both even and odd

Case

 G is not bipartite

fifififi some vertices may be both

even and odd!

2 0

fifififi

B
L

O
SSO

M

STEM is subpath of p
from r to v

BLOSSOM is subpath

BASE is vertex w

P is augmenting path
from r to t

r

ST
E

M

even
vertex

v

Shrink
Blossom

base w
even
vertex

w,v

t

t

t ' t '

of p from v to w
plus edge {w,v}

2 1

Theorem

If G' is formed from G by shrinking
of blossom B, then G contains an augmenting
path iff G' does.

(2) If G contains an augmenting path, then
apply Edmond's blossom shrinking algorithm
to find an augmenting path in G'.

(1) If G' contains an augmenting path p,
then if p visits blossom B we can insert an
augmenting subpath p' within blossom into
p t o ge t a new augment i ng p at h p̂ f or G

proof

2 2

Edmond's Blossom Shrinking Algorithm

input Graph G=(V,E) with matching M

i n i t i al i z at i on E = {(v,w) , (w,v) | {v,w} eeee E}

comment Edmond's algorithm will construct a

forest of trees whose paths are partial
augmenting paths

Note: We will let P(v) = parent of vertex v

{
 [0] f or each unmat ched ver t ex v eeee V
 d o l abe l v as "even"

 [1] f or each mat ched v eeee V d o
 l abe l v "unreached"

 s e t p(v) = nul l
 i f v i s mat ched t o edge {v,w}

t hen mat e (v) ¨̈̈̈ w
od

2 3

Edmond's Main Loop:

where v is "even"
(if none exists, then terminate and output

current matching M, since there is no
 augmenting path)

Choos e an unex pl ored edge (v,w) eeee E

Case 1

if w is "odd" then do nothing.

Case 2

if w is "unreached" and matched

then set w "odd" and set mate (w)
 "even"

Case 3

if w "even" and v,w are in distinct
 trees T,T' then output augmenting

 path p from root of T to v, through
 {v,w}, in T' to root.

P(w) ¨̈̈̈ v , P(mat e (w)) ¨̈̈̈ w

 v
even

 w

odd
mate(w)

even

T T'

v w

Unmatched
root

Unmatched
root

evenUnmatched
edge

even

2 4

Case 4 w is "even" and v,w in same tree T
 then {v,w} forms a blossom B

 containing all vertices which are

both (i) a descendant of LCA(v,w) and
 (ii) an ancester of v or w

where LCA(v,w) = least common ancester
of v,w in T

L C A (v,w)L C A (v,w)

Blossom

v w

* *
Blossom

v w

* *

S h r i n k all vertices of B to a single
vertex b. Define p(b) = p(LCA(v,w))
and p(x) = b for all x eeee B

2 5

Lemma Edmond's blossom-shrinking
algorithm succeeds iff
$$$$ an augmenting path in G

proof
Uses an induction on blossom

 shrinking stages

2 6

Time Bounds : O(n 4).

[1] [Gabow and Tarjan] show

Can implement in time O(nm)
all O(n) stages of matching algorithms
taking O(m) time per stage for blossom
shrinking

[2] [Micali and Vazirani] reduce

 in general graphs.

(Idea: Use network flow to get
 augmented paths).

t i me t o O(n m) f or unwei ght ed mat chi ng

