Algorithms Professor John Reif

ALG 5.2

Breadth-First Search of Graphs:
(a) Single Source Shortest Path
(b) Graph Matching

Main Reading Selections: CLR, Chapter 25

Auxillary Reading Selections:
AHU-Design, Sections 5.6-5.10
AHU-Data, Sections 6.3-6.4
Handouts: "Matchings" and
"Path-Finding Problems"

Algorithm Breadth First Search

```
input undirected graph G=(V,E)
with root r & V
```

```
initialize:
    \(\mathrm{L} \leftarrow 0\)
    for each \(\mathbf{\varepsilon} \mathrm{V}\) do visit(v) \(\leftarrow\) false
    LEVEL (0) \(\leftarrow\{\mathrm{r}\}\); visit (r) \(\leftarrow\) true
    while LEVEL(L) \(\neq\{ \}\) do
    begin
        LEVEL(L+1) \(\leftarrow\}\)
        for each veLEVEL(L) do
        begin
            for each \(\{\mathrm{v}, \mathrm{u}\} \quad \varepsilon\) E s.t. not visit (u)
                do
                add u to LEVEL(L+1)
                        visit (u) \(\leftarrow\) true
                        od
            end
            \(\mathrm{L} \leftarrow \mathrm{L}+1\)
            end
```

```
output LEVEL(0), LEVEL(1), .., LEVEL(L - 1)
    O(|V|+|E|) time cost
```

All edges $\{\mathbf{u}, \mathbf{v}\} \quad \varepsilon \mathrm{E}$ have level distance ≤ 1

Breadth First Search Tree T

LEVEL(0)

LEVEL(1)

LEVEL(2)

Single Source Shortest Paths Problem

input

digraph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ with root $\mathrm{r} \boldsymbol{\varepsilon} \mathrm{V}$ weighting d:E \rightarrow positive reals

Dijkstra's Greedy algorithm

initialize:

$$
\mathbf{Q} \leftarrow\}
$$

$$
\text { for each } \mathbf{v} \varepsilon \mathbf{V}-\{\mathbf{r}\} \text { do } \mathbf{D}(\mathbf{v}) \leftarrow \infty
$$

$$
\mathbf{D}(\mathbf{r}) \leftarrow \mathbf{0}
$$

until no change do
choose a vertex u ε V-Q
with minimum $\mathrm{D}(\mathrm{u})$
add u to Q
for each $(\mathbf{u}, \mathrm{v}) \varepsilon \mathrm{E}$ s.t. $\mathrm{v} \varepsilon \mathrm{V}-\mathrm{Q}$ do

$$
\mathbf{D}(\mathbf{v}) \leftarrow \min (\mathbf{D}(\mathbf{v}), \mathbf{D}(\mathbf{u})+\mathbf{d}(\mathbf{u}, \mathbf{v}))
$$

output $\forall \mathbf{v} \boldsymbol{\varepsilon} \mathbf{V}$
$D(v)=$ weight of min. path from r to v


```
induction step
    if D(u) is minimum for all u \varepsilon V-Q
then claim:
(1) \(D(u)\) is minimum cost of path from \(r\) to \(u\) in \(G\) suppose not: then path \(p\) with weight \(<\mathrm{D}(\mathrm{u})\) and such that p visits
```


Time Cost: per iteration

$\int-O(\log |V|)$ to find $u \varepsilon V-Q$ with min $D(u)$
 - O(degree(u)) to update weights

Graph G = (V,E)

matching \mathbf{M} is a subset of \mathbf{E} satisfies
if $\mathbf{e}_{1}, \mathrm{e}_{2}$ distinct edges in M
Then they have no vertex in common

Graph Matching Problem:
Find a maximum size matching

Let $G=(V, E)$ have matching M
goal: find a larger matching

definitions

> vertex v is matched if v is in an edge of M

An augmenting path $\mathbf{p}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathbf{k}}\right)$

initial matching M in G

augmenting path
$\mathrm{p}=((\mathbf{5}, 2),(2,6),(6,4),(4,7),(7,3))$

Theorem

\mathbf{M} is maximum matching iff there is no augmenting path relative to M
proof
(1) If M is smaller matching and p is an augmenting path for \mathbf{M}, then $\mathbf{M} \oplus \mathbf{P}$ is a matching size $>|\mathbf{M}|$
(2) If $\mathbf{M}, \mathrm{M}^{\prime}$ are matchings with $|\mathbf{M}|<\left|\mathbf{M}^{\prime}\right|$ then
Claim $\quad \mathbf{M} \oplus \mathbf{M}^{\top}$ contains an augmenting path for M.

proof The graph $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathbf{M} \oplus \mathbf{M}^{\mathbf{\prime}}\right)$

 has only paths with edges alternating between M and M^{\prime}.Repeatedly delete a cycle in \mathbf{G}^{\prime}
(with equal number of edges in $\mathbf{M}, \mathbf{M}^{\prime}$)
Since $|\mathbf{M}|<\left|\mathbf{M}^{\prime}\right|$ must eventually get augmenting path remaining for M .

Algorithm Maximum Matching

input graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
[1] $\mathrm{M} \leftarrow\}$
[2] while there exists an augmenting path p relative to M

$$
\text { do } \quad \mathbf{M} \leftarrow \mathbf{M} \oplus \mathbf{P}
$$

[3] output maximum matching \mathbf{M}

Remaining problem: Find augmenting path

```
Assume weighting d:E }->\mp@subsup{\textrm{R}}{}{+}=\mathrm{ pos. reals.
```


Theorem

Let M be maximum weight among matchings of size $|M|$. Let p be an augmenting path for M of maximum weight. Then matching $M \oplus P$ is of maximum weight among matchings of size $|\mathbf{M}|+1$.

proof

Let M^{\prime} be any maximum weight matching of size $|\mathbf{M}|+1$. Consider the graph $\mathbf{G}^{\prime}=(\mathbf{V}, \quad \mathbf{M} \oplus \mathbf{M})$. Then the maximum weight augmenting path p in G^{\prime} can be shown to give a matching $\quad M \oplus P$ of the same weight as M'.

```
Assume G is bipartite graph
    with matching M
```

Use Breadth-First Search:
LEVEL(0) = some unmatched vertex r for odd $L>0$,

LEVEL(L) $=\{\mathbf{u} \mid\{\mathbf{v}, \mathbf{u}\} \in$ E-M when $\mathrm{v} \varepsilon$ LEVEL(L-1) and u in no lower level\}
for even $L>0$
$\operatorname{LEVEL}(\mathrm{L})=\{\mathbf{u} \mid\{\mathrm{v}, \mathrm{u}\} \in \mathrm{M}$ where $v \varepsilon$ LEVEL(L-1) and u in no lower level\}

Cases

(1) If for some odd $\mathrm{L}>0$, LEVEL(L) contains an unmatched vertex u then the Breadth First Search tree T has an augmenting path from r to u
(2) Otherwise no augmenting path exists, so M is maximal.

Bipartite Graph $\quad \mathbf{G}=(\mathbf{V}, \mathbf{E})$
$\mathbf{V}=\mathbf{V}_{1} \cup \mathbf{V}_{2}, \quad V_{1} \cap \mathbf{V}_{2}=\Phi$
Eis a subset of $\left\{\{u, v\} \mid u \varepsilon V_{1}, v \varepsilon V_{2}\right\}$

Theorem

If $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ is a bipartite graph, then the maximum matching can be constructed in $\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$ time.

proof

Each stage requires $O(|E|)$ time for time for Breadth First Search construction of augmenting path.

Generalizations:

(1) Compute Edge Weighted Maximum Matching
(2) Edmonds gives a polynomial time algorithm for maximum matching of any graph

Let \mathbf{M} be matching in general graph \mathbf{G}

Fix starting vertex r
unmatched vertex
Let vertex $\varepsilon \boldsymbol{V}$ be even if
\exists even length augmenting path from r to v
and odd if
\exists odd length augmenting path from r to v.

```
Case
```

G is bipartite
\Rightarrow no vertex is both even and odd

```
Case
    G is not bipartite
    => some vertices may be both
    even and odd!
```


Theorem

If G^{\prime} is formed from G by shrinking of blossom B, then G contains an augmenting path iff G^{\prime} does.

Edmond's Blossom Shrinking Algorithm

input $\mathbf{G r a p h} \mathbf{G}=(\mathbf{V}, \mathbf{E})$ with matching \mathbf{M}
initialization $\overrightarrow{\mathbf{E}}=\{(\mathbf{v}, \mathbf{w}),(\mathbf{w}, \mathbf{v}) \mid\{\mathbf{v}, \mathbf{w}\} \varepsilon \mathbf{E}\}$

proof

(1) If G^{\prime} contains an augmenting path p, then if p visits blossom B we can insert an augmenting subpath p^{\prime} within blossom into p to get a new augmenting path $\hat{\mathrm{p}}$ for \mathbf{G}
(2) If G contains an augmenting path, then apply Edmond's blossom shrinking algorithm to find an augmenting path in G^{\prime}.

Edmond's algorithm will construct a forest of trees whose paths are partial augmenting paths

Note: We will let $P(v)=$ parent of vertex v

Edmond's Main Loop:

Choose an unexplored edge (v, w) $\varepsilon \overrightarrow{\mathrm{E}}$ where v is "even"

(if none exists, then terminate and output current matching M , since there is no augmenting path)

Case 1 if w is "odd" then do nothing.
Case 2 if w is "unreached" and matched then set w "odd" and set mate (w) "even"
$\mathbf{P}(\mathbf{w}) \leftarrow \mathbf{v}, \mathbf{P}(\operatorname{mate}(\mathbf{w})) \leftarrow \mathbf{w}$

Case 3 if \mathbf{w} "even" and v, w are in distinct trees T, T ' then output augmenting path p from root of T to v, through $\{\mathrm{v}, \mathrm{w}\}$, in T^{\prime} to root.

Case $4 \quad w$ is "even" and \mathbf{v}, \mathbf{w} in same tree T then $\{\mathbf{v}, \mathbf{w}\}$ forms a blossom B containing all vertices which are
both (i) a descendant of $\mathrm{LCA}(\mathrm{v}, \mathrm{w})$ and (ii) an ancester of v or w
where $\operatorname{LCA}(\mathbf{v}, \mathbf{w})=$ least common ancester of v, w in T

Shrink all vertices of B to a single vertex b. Define $p(b)=p(L C A(v, w))$ and $p(x)=b$ for all $x \in B$

Lemma	Edmond's blossom-shrinking
	algorithm succeeds iff
	\exists an augmenting path in \mathbf{G}

proof

Uses an induction on blossom shrinking stages

Time Bounds : $\mathrm{O}\left(\mathrm{n}^{4}\right)$.

[1] [Gabow and Tarjan] show

Can implement in time $O(n m)$ all $\mathbf{O (n)}$ stages of matching algorithms taking $\mathbf{O}(\mathbf{m})$ time per stage for blossom shrinking
[2] [Micali and Vazirani] reduce
time to $\mathbf{O}(\sqrt{\mathrm{n}} \mathrm{m})$ for unweighted matching in general graphs.
(Idea: Use network flow to get augmented paths).

