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Algorithms
Professor John Reif

ALG 5.2

Breadth-First Search
of Graphs:

(a)  Single Source Shortest Path
(b)  Graph Matching

Main Reading Selections:  
   CLR, Chapter 25

 
 Auxillary Reading Selections:

AHU-Design, Sections 5.6-5.10
AHU-Data, Sections 6.3-6.4  

 Handouts:  "Matchings" and  
 "Path-Finding Problems"
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Breadth First SearchAlgorithm

input   undirected graph   G = (V,E)
  with root  r eeee V

initialize:  L ¨̈̈̈ 0

for  each v eeee  V  do   visit(v) ¨̈̈̈ false

LEVEL(0) ¨̈̈̈ {r} ; visit (r) ¨̈̈̈ true

while  LEVEL(L)  ππππ        {{{{}}}}         do

begin
LEVEL(L+1) ¨̈̈̈    {{{{}}}} 

 for  each  v eeee LEVEL(L) do
begin
 
 

for  each {v,u} eeee E  s.t. not visit (u)
do
add u to LEVEL(L+1)
visit (u) ¨̈̈̈ true
od

end
L ¨̈̈̈ L+1

end

output   LEVEL(0), LEVEL(1), ..., LEVEL(L - 1)
  O(|V|+|E|) time cost



3

All edges {u,v} eeee E have level distance ££££ 1

Example
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Single Source Shortest Paths Problem

input 
  digraph G=(V,E) with root r eeee V
 weighting   d:E ÆÆÆÆ positive reals

Dijkstra's  Greedy algorithm

initialize:
Q ¨̈̈̈    {{{{}}}}
for  each  v eeee V-{r}  do    D(v) ¨̈̈̈    ••••
D(r) ¨̈̈̈ 0
until no change  do

choose a vertex   u eeee V-Q
with minimum D(u)

add u to Q
for each (u,v) eeee E   s.t.   v eeee V-Q do

D(v) ¨̈̈̈ min(D(v), D(u) + d(u,v))
output  

 
"""" v eeee V

D(v) = weight of min. path from r to v
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example
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Q  u  D(1)   D(2)   D(3)   D(4)   D(5)

FFFF   1    0     ••••                         ••••                         ••••                         ••••

                        {1}         2    0    10     30      ••••     100

   {1,2}  3    0    10     30     60    100

 {1,2,3}  4    0    10     30     50    100

   {1,2,3,4} 5    0    10     30     50      90
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proof  of Dijkstra's Algorithm

use  induction hypothesis:

  basis    D(r) = 0   for   Q={r}
{

 ( 1 ) """" v eeee    V,
D( v)  i s  wei ght  of  t he  mi ni mum cos t  of
pat h p  f rom r  t o v,  where  p  vi s i t s
onl y  ver t i ces  of  Q »»»»    {v}

 ( 2 ) """" v eeee    Q,
D( v)  = mi ni mum cos t  pat h f rom r  t o v
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induction step

if D(u) is minimum for all u eeee V-Q

then claim:

 
 

   (1) D(u) is minimum cost of path from r to u in G

suppose not:  then  path p with
  weight < D(u) and such that p visits
  a vertex  w eeee V-(Q »»»» {u}).  Then
  D(w) < D(u) , contradiction.

  (2) is satisfied by D(v) = min (D(v),D(u)+d(u,v))
 
        

(u,v) eeee Efor """" v eeee Q »»»»{u}
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Time Cost:    per iteration

{ -    O( l og |V|)  t o f i nd u  eeee    V- Q
wi t h mi n D( u)

 -  O( degree ( u) )  t o updat e  we i ght s

Since there are |V| iterations,

Total Time  O( |V|(log |V|) + |E| )
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Graph   G = (V,E)

matching M is a subset of  E  satisfies

if  e 1
, e 2   distinct edges in M

Then  they have no vertex in common

   
example 

Graph Matching Problem: 
 Find a maximum  size matching

1 0

Let   G = (V,E) have matching M

goal:  find a larger matching

definitions
   vertex v is matched  if

v is in an edge of M

An augmenting path  p=(e 1 , e 2 ,..., e k)

   

requi re{
begi ns  and ends  at  

unmat ched
 

ver t i ces
e

1
,  e

3
,  e

5
 , . . . ,  e

k
 eeee        E- M

e
2
,  e

4
 , . . .     e

k - 1
 eeee        M
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initial matching  M  in  G

1

2

5

6

3
7

4 8

|M| = 2

augmenting path
p = ((5,2), (2,6), (6,4), (4,7), (7,3))

new matching  M'=P ≈≈≈≈  M = (P »»»»  M) - (P «««« M)
1

2

5

6

3
7

4 8

≈≈≈≈|P M| = 3

1 2

Theorem 

  M is maximum  matching
iff there is no  augmenting path
relative to M

proof   (1) If M is smaller matching and p is an
 
   

augmenting path for M,
 
   

then M ≈≈≈≈ P is a matching size > |M|

(2) If M, M' are matchings with
|M| < |M'| then

Claim  
  

M ≈≈≈≈ M' contains an augmenting
path for M.

proof   The graph G'=(V, M ≈≈≈≈    M')
has only paths with edges alternating
between M and M'.

Repeatedly delete a cycle in G'
(with equal number of edges in M,M')

Since |M|<|M'| must eventually get
augmenting path remaining for M.
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Algorithm Maximum Matching

input   graph  G=(V,E)

[1] M ¨̈̈̈    {{{{}}}}

[2] while  there exists an augmenting
path p relative to M

do   M ¨̈̈̈   M ≈≈≈≈ P

[3] output  maximum matching M

Remaining problem:
Find augmenting path
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Assume weighting   d:E ÆÆÆÆ R + = pos. reals.

Theorem
Let M be maximum weight among
matchings of size |M|.  Let p be an  

 augmenting path for M of maximum  
 weight.  Then matching M ≈≈≈≈ P is of  

 maximum weight among matchings of  
 size |M|+1.

proof
  Let M' be any maximum weight  

 matching of size |M|+1.  Consider the
graph G'=(V, M ≈≈≈≈ M').  Then the maximum
weight augmenting path p in G' can be
shown to give a matching M ≈≈≈≈ P of the
same weight as M'.
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Assume  G is bi par t i t e graph  
with matching M

Use Breadt h- Fi r s t  Search:

  LEVEL(0) = some unmatched vertex r

for odd L  > 0,

LEVEL(L) = {u | {v,u} eeee E-M
   when  v eeee LEVEL(L-1)
   and u in no lower level}

for even L  > 0

LEVEL(L) = {u | {v,u} eeee M
    where v eeee LEVEL(L-1)

     and u in no lower level}
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Cases
(1) If for some odd L>0,

  LEVEL(L) contains an unmatched vertex u
  then the Breadth First Search tree T has
  an augmenting path from r to u

(2) Otherwise no augmenting path exists, so
M is maximal.



1 7

Bipartite Graph     G=(V,E)

V = V
1
 »»»»     V

2
   ,    V

1
 ««««  V

2
 = FFFF

E i s  a s ubs e t  of  { {u ,v} | u  eeee    V
1
 ,  v eeee    V

2
}

V
1

V
2
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Theorem

If G=(V,E) is a bipartite graph,
then the maximum matching can be
constructed in O(|V||E|) time.

proof

Each stage requires O(|E|) time for
time for Breadth First Search construction

 of augmenting path.

Generalizations:

{
( 1 )  Comput e  Edge  Wei ght ed Max i mum

 Mat chi ng

( 2 )  Edmonds  gi ves  a pol y nomi al  t i me

   al gor i t hm f or  max i mum mat chi ng of

 any  graph



1 9

Let M be matching in general graph G

Fix s t ar t i ng ver t ex  r
unmatched vertex

Let vertex v eeee V be even  if

 
 

$$$$ even length augmenting path from r to v

and odd   if  
  

        $$$$ odd length augmenting path from r to v.

Case

   G is bipartite

 fifififi 
 

no  vertex is both even and odd

Case

 G is not  bipartite
 
fifififi some vertices may be both

even and odd!

2 0

fifififi

B
L

O
SSO

M

STEM is subpath of p
from r to v

BLOSSOM is subpath

BASE is vertex w

P is augmenting path
from r to t

r

ST
E

M

even 
vertex

v

Shrink
Blossom

base w
even
vertex

w,v

t

t

t ' t '

of p from v to w
plus edge {w,v}
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Theorem

If G' is formed from G by shrinking
of blossom B, then G contains an augmenting  
path iff G' does.

(2) If G contains an augmenting path,  then
apply Edmond's blossom shrinking algorithm
to find an augmenting path in G'.

(1) If G' contains an augmenting path  p,
then if p visits blossom B we can insert an
augmenting subpath p' within blossom into
p t o ge t  a new augment i ng p at h  p̂  f or  G

proof
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Edmond's Blossom Shrinking Algorithm

input  Graph  G=(V,E) with matching M

 

i n i t i al i z at i on   E = {( v,w) , ( w,v)  | {v,w} eeee    E}

comment Edmond's algorithm will construct a
 
 

forest of trees whose paths are partial
augmenting paths  

Note: We will let P(v) = parent of vertex v

{
 [0 ] f or   each unmat ched ver t ex   v eeee    V
      d o   l abe l  v as  "even"

 [1 ] f or   each mat ched  v eeee    V d o
   l abe l  v  "unreached"

            s e t   p( v)  = nul l
            i f   v i s  mat ched t o edge  {v,w}

t hen   mat e  ( v)  ¨̈̈̈ w
od
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Edmond's  Main Loop:

where v is "even"
( if  none exists, then terminate and output

current matching M, since there is no  
 augmenting path)

Choos e   an  unex pl ored edge  ( v,w)  eeee    E

Case 1  
 

if  w is "odd" then do nothing.

Case 2  
 

if  w is "unreached" and matched
 
 

then  set w "odd" and set mate (w)
  "even"
 
  

Case 3  
 

if  w "even" and v,w are in distinct
  trees T,T' then output augmenting  

   path p from root of T to v, through
  {v,w}, in T' to root.

P( w)  ¨̈̈̈ v ,  P( mat e ( w) )  ¨̈̈̈ w

 v
even

 w

odd
mate(w)

even

T T'

v w

Unmatched
root

Unmatched
root

evenUnmatched
edge

even
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Case 4   w is "even" and v,w in same tree T  
  then {v,w} forms a blossom B  

  containing all vertices which are

both (i)  a descendant of LCA(v,w) and
  (ii) an ancester of v or w

where   LCA(v,w) = least common ancester
of v,w in T

L C A (v,w)L C A (v,w)

Blossom

v w

* *
Blossom

v w

* *

S h r i n k  all vertices of B to a single
vertex b.   Define p(b) = p(LCA(v,w))
and p(x) = b for all x eeee  B
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Lemma Edmond's blossom-shrinking   
algorithm succeeds iff    
$$$$ an augmenting path in G

proof
Uses an induction on blossom  

 shrinking stages
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Time Bounds : O(n 4).

[1] [Gabow and Tarjan] show

Can implement in time O(nm)
all O(n) stages of matching algorithms
taking O(m) time per stage for blossom
shrinking

[2] [Micali and Vazirani] reduce

 in general graphs.

(Idea: Use network flow  to  get  
 augmented paths).

t i me  t o O( n m)  f or  unwei ght ed mat chi ng


