Algorithms
Professor John Reif

ALG 5.3
Flow Algorithms:

(&) Max-flow, min-cut Theorem
(b) Augmenting Paths

(c) 0-1flow

(d) Vertex Connectivity

(e) Planar Flow

~ Main Reading Selections:
CLR, Chapter 27

Auxillary Reading Selections:
Handout: " Network Flows"

Combinatorial Optimization

, by Eugene
Q Lawler, Holt, Rinehart, Winston, 1976.
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Networ k Definition:
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[ Reverse Edges: E =
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Flow f

Value (f)=Xf (sv)

vV € V

= sum of flow from
source s

cut X,X ispartition of V
wherese X, te X

f(X,Y)=V§;,( f(v,u)

ueX

Lemma: Theflow acrossany cut X, X
isequal to thevalue(f).

proof: f(X,X)= ZX f(u,v)= 2;,( f(v,w)
ueX weX

= Y f(v,w)=value(f)-0=value(f).

v,weX

Q.E.D.




/residual capacity of edgee
res(e) =c(e)— f(e)

residual graph R: use modified capacities
c@e) =res(e) for res(e) >0

augmenting path p for flow f ispath in R

fromstot

res(p) =min(res(e))

eep

Lemma: R hasmax flow value
value( f *)—value( f), wheref * isthe
max flow of G.

proof: If f@sflowinR, thenf + fGis
flow of G. Also, f& f*—fisaflow
inR.

Q.E.D.
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Augmenting Path
(s,b,d,a,ct)

Network with Flow Residual Networ k

min cut: cut of minimum capacity

max flow: max(value( f))

fisflow

[ T 1 1 Cut

Ford - Fulkerson&:

pr oof :

Q.E.D.

Theorem: The max flow f isequal to the

min cut X, X.

(1) If fismax flow, then there
can be no augmenting path from
stot. Let X =verticesinV,

reachablefrom sin residual graph R.

X=V-X

VaJue(f):UZS( f(u,v) =uzxc(u,v) =c(X, X)

veX veX
(2) Clearly, f hasvalueat most ¢(X,X)
for any cut X, X.
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Max Flow =
Min Cut = 6

Edges Labeled (Capacity, Flow)

9

/Lemma: At most |E| flow augmentations are\
required to construct max. flow.
proof: Supposef * ismax flowin G.
Let G* besubgraph of G with pos. flow.

<0
whiled path from stot do
(1—i+1
find apath p, fromstotin G*
let A, =min f *(e)

eep

for all ee pdof *(e) « f*(e)-A,
if f *(e)<0, then deleteefrom G*
od

od

\

Note Deletesat least on edge per step!

\ )
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given flow f
saturated edge e has f(e) =c(e)

blocking flow f every pathfrom sto t

has saturated edge
( so can not augment flow! )

Ildea: Re-routeflow

Level Graph L subgraphof R
level (v)= length of shortest path from

sto vin R

L containsonly edges (Vv,U) € R s.t.
level (U)= levdl (v)+1

- L gives shortest augmenting paths
Construct L in O(IM *E) time by

Breadth First Search of R

11

Dinic® Flow Algorithm )

Input: network G=(V,E),st

capacities;:(EUER) » R*
Initialization: Ve, f(e)«0

L oop:
[1] Construct level graph L for f
by Breadth First Search.
[2] By augmentations, find blocking
flowf@nL fromf.
[3] Ve f(e)« f(e)+ f@e)
[4] If tisnotin level graph,
then return f
elsegoto[1] y
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Dinic ‘s Algorithm halts after |V| blocking steps

Suppose fiscurrent flow with

R=residual graph (currently)

level (v)=min length path from
stovinR

R = new residual graph

level'(v) = min length of path

stoVv inR'
Claim | level '(t)>level (t) qst Level Graph level O
, : 0000 with
(by contradiction ) [ Blocking Flow
level 1
If level(t) = level' (1),
then level w)=level(v)+ 1 for every edge
(v,w) e L. Thiscontradictsthefact that 2=
oneedgeissaturated (on theblocking flow )
: level 2
on any path pinL.
Q.E.D., Hence n stepssufficefor thealgorithm L level 3
13 1
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Finding a Blocking Flow

(Karzanov)

Preflowj:

(1) Satisfies capacities constraints

(2) May have unbalanced verticies
where  Af(u)= Xf(u,v) >0
uev

Wave method:
- begin with blocking preflow f

(saturateson edgeon every path s to t

- balance verticesso Af (v) =0to
get blocking flow

To balance blocked vertex v:
Repeat (until A f (v) =0) do
chooseedge (u,v) with f(u,v) >0
decrease f(u,v) by min (f(uv), A f(v))

or

18




19

(g )

20




6,6 6,6 6,6 6,5
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Increased Flow Decreased Flow Decreased Flow Decreased Flow
Balanced d Balanced c All Balanced
Edges Labeled (Capacity, Flow) Edges Labeled (Capacity, Flow)
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set s blocked, and set V —{s} all unblocked.
Repeat until there are no unbalanced vertices do

Increase flow: Scan all vertices betweent,sin
topological order, balancing every vertex v that
isunbalanced and unblocked. (If balancing fails,
make v blocked.)

Decrease flow: Scan verticesin reversetopological

order, balancing each vertex that is unbalanced and
blocked.

23

Theorem: Wave Algorithm computes a blocking
flow in O(nz) time (and hence amax flow in

O(n®) time).

Proof (use invariants):

(D) Ifv => every path from v to t has
saturated edge.

(2) The preflows constructed by algorithm are
blocking.

Modify: S blocked, and departing edges saturated.
| nductive Step:

(a) Scanning in in increase
flow guarantees no unblocked, unbalanced
vertices.

(b) Scanning in reverse topological order
guarentees every blocked vertex gets
bal anced.

Note: Each step blocks at least 1 vertex = at
most N steps flow on edge € increases and
decreases at most once = total time

O(VI* +E)=0(VF)

24




| mproved Flow Algorithms

Sleater - Tarjan use data structuresto decrease blocking
flow algorithmsto O(|E|logV|) time, giving...

Theorem
Max flow can be computed in O(|V|E|logV|) time.

BHSEN con s arion)

0-1 Flow requiresmin (IVI%,IEI}/Z) blocking steps of
Dinic's Algorithm, so total time

O(min| VI3 |EP2)|Ellog(V)).

25
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-

Unit Network: All capacities € Z and every vertex

single entering edge or

vother than sor thasy . :
single departing edge.

Claim: If Unit Network G has max flow f,
i V|
then max level is s( value( ) +1

Proof: G can be decomposed into value( f) vertex-
digoint pathsfrom stot.

~

so value(fp (level-1) < |V|

26




1,
Theorem: Dinic® Algorithm has O(V/z) stepson
unit networks.
1/
Proof: (1) If value(f)<|V[2 =#steps<|V|

1,
(2) Ifvalue(f)>NV| = level < Vlé+1,
Vi

SO # steps< O(V%).

Q.E.D.

1
Total Time Unit Flow isO(V/ZElogE).

27
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N(u,v) = min vertex cut size for (G,u,v)

G undirected

Transform Vertex Connectivity to
Unit Network Flow Problem Vertex Connectivity: c(G)

n-1 If Giscomplete graph
Min N(u,v) €ese
u,veV

(u,v)e =

c(G) =

Connectivity < min degree v,
veVv

Total Time O(\V|*|E|log(E)) to compute

s-t Vertex Connectivity N(sit) (from o t). vev
Hence, ¢(G) < 3%
Q.E.D.
N (s,t)= number of digoint pathsfrom stot. (also true for edge connectivity)
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Let b beany nodein a component of G—S
which does not have a.

Thus, N(a,b) £|S=c(G).

Q.E.D.
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|dea: Choose random a

O[Iog(%}V%IE“OQ EJ

e V.

Randomized Algorithm for
Vertex Connectivity

(Mehlhorn & Students)

e

(S

[0] pe|V[-2

Iog(
[1] fori=1,2,... untili>

doselect a €V at random
K < min(p,min N(a,b))
beV

od
[2] outputp

Input: G=(V,E), error bound, &, O<e<l

:
f)
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Theorem: Prob(p#c(G))<e
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G=(V,E) isaplanar graphif G can be

embedded on plane so no two edges cross.

( N\

Dual: D(G)=(F,D(E))
F = faces of embedding

D(E)={{F..F }lec Eisbetween F; ,F; ]




f

Lemma: If Gisaplanar embedded network,

then max flow in G issame as min cost
cyclein D(G) separating s,t.

Proof: Weassumec(F,F,)=c(e), if eis

[RRN

between F,F;. Then, by min-cost cut
theorem, flow value= min cut X, X between s,t

=min cost cyclein D(G)

separating s, t
. y,
4 N\
Cycle p in D(G)
t
(N )
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G is outerplanar embedded if the planar

embedding hasface F, incident to all vertices.

ldea: ToreducetoMin Cost Path
Add new edge (s,t) with weightoo .
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Find min cost path from F, to F,&in D(G)
=mins-tcutinG
=max flow valuein G
Theorem: If Gisouterplanar, we can find

max flow in O(|V|log|V|) time.
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Lemma: [Reif] If

on t, then any

edge of u(s,t).

n(s,t) isaminimum

cost path in D(G) from aface
bounding on sto a face bounding

min cost cyclein

D(G) separating s,t must contain an

u(s,t) path

(s,t) cut cycle
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Pr oof

Suppose not. Then we can shortcut
any cycle of D(G) separating st to get
ashorter one, using edges of thep(s;t)
path.

39

RequiresO(| Og\VD steps
Each step

O(VIlogV)) time

1(s,h path
’ t
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