Algorithms Professor John Reif

ALG 5.3 Flow Algorithms:

- (a) Max-flow, min-cut Theorem
- (b) Augmenting Paths
- (c) 0 1 flow
- (d) Vertex Connectivity
- (e) Planar Flow

Main Reading Selections: CLR, Chapter 27

Auxillary Reading Selections:
Handout: "Network Flows"
Combinatorial Optimization
Lawler, Holt, Rinehart, Winston, 1976.

Network Definition:

digraph
$$G = (V, E)$$
distinguished vertices:
$$\underbrace{source}_{source} \quad s \in V$$

$$\underbrace{sink}_{t \in V}$$
edge capacities: $C: E \rightarrow R^+$

Reverse Edges:
$$E^R = \text{reverse of edges}$$
 $u \longrightarrow v$
 $u \longleftarrow v$
 (u,v)
 $(u,v)^R = (v,u)$

Flow
$$f: (E \cup E^R) \rightarrow R^+$$

$$\forall e \in E \qquad (1) \quad f(e) = -f(e^R)$$

$$(2) \quad f(e) \leq c(e)$$

$$\forall v \in V - \{s,t\} \qquad (3) \sum_{(v,u) \in E} f(v,u) = 0$$

Value
$$(f) = \sum_{v \in V} f(s,v)$$

= sum of flow from source s

3

cut X, \overline{X} is partition of Vwhere $s \in X$, $t \in \overline{X}$

$$f(X,\overline{X}) = \sum_{v \in X} f(v,u)$$

$$u \in \overline{X}$$

Lemma: The flow across any cut X, \overline{X} is equal to the value(f).

residual capacity of edge e:

$$res(e) = c(e) - f(e)$$

residual graph R: use modified capacities

$$c \oplus e = res(e)$$
 for $res(e) > 0$

augmenting path p for flow f is path in R from s to t

$$\frac{res(p)}{e \in p} = \min(res(e))$$

Lemma: R has max flow value

 $value(f^*)-value(f)$, where f^* is the max flow of G.

<u>proof</u>: If f C is flow in R, then f + f C is flow of G. Also, $f \oplus f * -f$ is a flow in R.

Q.E.D.

Flow fon path $p = (e_1, e_2, ..., e_k)$

residual
$$res(p) = \Delta = \min_{e \in p} (c(e) - f(e))$$

gives Augmented flow f + res(p)

Network with Flow

min cut: cut of minimum capacity

 \max flow: \max (value(f))

f is flow

Ford - Fulkerson@:

The max flow f is equal to the

min cut X, \overline{X} .

proof: (1) If f is max flow, then there can be no augmenting path from s to t. Let X = vertices in V, reachable from s in residual graph R.

$$\overline{X} = V - X$$

$$Value(f) = \sum_{\substack{u \in X \\ v \in \overline{X}}} f(u,v) = \sum_{\substack{u \in X \\ v \in \overline{X}}} c(u,v) = c(X,\overline{X})$$

(2) Clearly, f has value at most $c(X, \overline{X})$ for any cut X, \overline{X} .

Q.E.D.

Residual Network

Edges Labeled (Capacity, Flow)

```
Lemma: At most |E| flow augmentations are required to construct max. flow.

proof: Suppose f * is max flow in G.

Let G * be subgraph of G with pos. flow.

i \leftarrow 0

while \exists path from s to t do

\begin{cases}
i \leftarrow i+1 \\
\text{find a path } p_i \text{ from } s \text{ to } t \text{ in } G^* \\
\text{let } \Delta_i = \min_{e \in p_i} f *(e) \\
e \in p \text{ do } f *(e) \leftarrow f *(e) \cdot \Delta_i \\
\text{if } f *(e) \leq 0, \text{ then delete } e \text{ from } G^* \\
\text{od}
\end{cases}
```

Definitions

```
given flow f

saturated edge e has f(e) = c(e)

blocking flow f every path from s to t

has saturated edge

(so can not augment flow!)
```

Idea: Re-route flow

Level Graph L subgraph of R

```
level (v) = length of shortest path from s to v in R

L contains only edges (v,u) \in R \text{ s.t.}

level (u) = \text{level} \quad (v) + 1
```

Note

L gives shortest augmenting paths

Construct L in O(|V| + |E|) time by

Breadth First Search of R

Dinic Flow Algorithm

Input: network G = (V, E), s, t capacities $c_i : (E \cup E^R) \to R^+$

Initialization: $\forall e, f(e) \leftarrow 0$

Loop:

- [1] Construct level graph L for f by Breadth First Search.
- [2] By augmentations, find blocking flow f in L from f.
- [3] $\forall e, f(e) \leftarrow f(e) + f \oplus e$
- [4] If t is not in level graph,
 then return f
 else go to [1]

Theorem

Dinic 's Algorithm halts after |V| blocking steps

Proof

Suppose f is current flow with

R = residual graph (currently)

level (V) = min length path from

Sto V in R

R' = new residual graph

level'(V) = min length of path

S to V in R'

Claim

level '(t) > level (t)

Proof (by contradiction) If level(t) = level'(t), then level (W) = level(V) + 1 for every edge (V,W) ∈ L. This contradicts the fact that ≥ one edge is saturated (on the blocking flow) on any path pin L.

Q.E.D., Hence n steps suffice for the algorithm

Finding a Blocking Flow (Karzanov)

Preflow i:

- (1) Satisfies capacities' constraints
- (2) May have unbalanced verticies $\Delta f(u) = \sum f(u,v) > 0$ where

Wave method:

- begin with blocking preflow f (saturates on edge on every path s to t
- balance vertices so $\Delta f(v) = 0$ to get blocking flow

To balance blocked vertex v:

```
Repeat (until \Delta f (v) =0) do
     choose edge (u,v) with f(u,v) > 0
     decrease f(u,v) by min (f(uv), \Delta f(v))
```

or

18

To attempt to <u>balance unblocked vertex</u> **v**:

Repeat (until $\Delta f(v) = 0$, or there is not an unsaturated edge (v, w) where w is unblocked). do choose some such edge (v, w) and decrease f(v, w) by $\min(C(v, w) - f(v, w), \Delta f(v))$

Wave Algorithm for Blocking Flow

<u>Initialize</u>: with preflow that saturates every edge out of *s* and otherwise 0.

set s blocked, and set $V - \{s\}$ all unblocked. Repeat until there are no unbalanced vertices do

Increase flow: Scan all vertices between t,s in topological order, balancing every vertex v that is unbalanced and <u>unblocked</u>. (If balancing fails, make v <u>blocked</u>.)

<u>Decrease flow</u>: Scan vertices in reverse topological order, balancing each vertex that is unbalanced and blocked.

Theorem: Wave Algorithm computes a blocking flow in $O(n^2)$ time (and hence a max flow in $O(n^3)$ time).

Proof (use invariants):

- (1) If v blocked \Rightarrow every path from v to t has saturated edge.
- (2) The preflows constructed by algorithm are blocking.

Modify: *s* blocked, and departing edges saturated.

Inductive Step:

- (a) Scanning in topological order in increase flow guarantees no unblocked, unbalanced vertices.
- (b) Scanning in reverse topological order guarentees every blocked vertex gets balanced.

Note: Each step blocks at least 1 vertex \Rightarrow at most n steps flow on edge e increases and decreases at most once \Rightarrow total time

$$O(|V|^2 + |E|) = O(|V|^2)$$

Improved Flow Algorithms

Sleater - Tarjan use data structures to decrease blocking flow algorithms to $O(|E|\log|V|)$ time, giving...

Theorem

Max flow can be computed in $O(|V||E|\log|V|)$ time.

Special Case:

0-1 Flow, if $\forall e \in E, c(e) = 1$

Theorem

(Evan and Tarjan)

0-1 Flow requires min $(|V|^{\frac{7}{3}}, |E|^{\frac{1}{2}})$ blocking steps of Dinic's Algorithm, so total time $O(\min(|V|^{\frac{7}{3}}, |E|^{\frac{1}{2}}) |E| \log(V)$.

Unit Network: All capacities $\in Z$ and every vertex v other than s or t has $\begin{cases} \text{single entering edge or} \\ \text{single departing edge.} \end{cases}$

Claim: If Unit Network G has max flow f,
then max level is $\leq \binom{|V|}{value(f)} + 1$

Proof: G can be decomposed into value(f) vertex-disjoint paths from s to t.

Theorem: Dinic@ Algorithm has $O(|V|^{\frac{1}{2}})$ steps on unit networks.

Proof: (1) If $value(f) \le |V|^{\frac{1}{2}} \Rightarrow \# steps \le |V|^{\frac{1}{2}}$

(2) If $value(f) > |V|^{\frac{1}{2}} \Rightarrow level \le \frac{|V|}{|V|^{\frac{1}{2}}} + 1$,

so # steps $\leq O(|V|^{\frac{1}{2}})$.

Q.E.D.

Total Time Unit Flow is $O(|V|^{\frac{1}{2}}|E|\log|E|)$.

(s-t) Vertex Separator $S \le V$: if all paths from s to t contain $v \in S$.

Menger® Theroem: The size of the smallest s,t Vertex Separator S is exactly the same as the number of vertex disjoint paths from s to t.

Transform Vertex Connectivity to Unit Network Flow Problem

Total Time $O(|V|^{\frac{1}{2}}|E|\log(E))$ to compute s-t Vertex Connectivity N(s,t) (from sto t).

N(s,t) = number of disjoint paths from s to t.

N(u,v) = min vertex cut size for (G,u,v)**G** undirected **Vertex Connectivity: C**(**G**) if G is complete graph (u, v) ∉ E Lemma Proof Connectivity $\leq \min_{v \in V} \text{ degree } V$, but $\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{degree}(\mathbf{v}) = 2 | \mathbf{\Xi}|$ Hence, $\mathbf{c}(\mathbf{G}) \leq 2 |\mathbf{E}|$ Q.E.D. (also true for edge connectivity)

Lemma: If
$$S$$
 is (u,v) Vertex Separator with $|S|=c(G)$, then
$$c(G)=\min_{(a,b)\not\in E}N(a,b) \text{ for all } a\in V-S$$

Proof: G-S has at least 2-components

Let b be any node in a component of G-S which does not have a.

Thus, $N(a,b) \leq |S| = c(G)$.

Q.E.D.

<u>Idea:</u> Choose random $a \in V$.

Randomized Algorithm for Vertex Connectivity (Mehlhorn & Students)

Input:
$$G = (V, E)$$
, error bound, ε , $0 < \varepsilon < 1$

$$[0] \quad \mu \leftarrow |V| - 2$$

$$[1] \quad \text{for } i = 1, 2, \dots \text{ until } i \ge \log \left(\frac{1}{\varepsilon}\right) \log \left(\frac{|V|}{\mu}\right)$$

$$\text{do select } a_i \in V \text{ at random}$$

$$\mu \leftarrow \min(\mu, \min_{b \in V} N(a_i, b))$$

$$\text{od}$$

$$[2] \quad \text{output } \mu$$

Theorem: $\operatorname{Prob}(\mu \neq c(G)) \leq \varepsilon$

<u>Proof</u>: Let S be a Vertex Separator with |S| = c(G). If $\mu > c(G)$, then $a_1, a_2, ..., a_k$ all belong to S, where

all belong to S, where
$$k \ge \frac{\log(\frac{1}{\varepsilon})}{\log(\frac{|V|}{c(G)})}$$

Hence, prob $(\mu > c(G)) = \text{prob } (a_1, ..., a_k \in S)$ $= \left(\frac{|S|}{|V|}\right)^k = \left(\frac{c(G)}{|V|}\right)^k = 2^{-\log(\frac{1}{\varepsilon})} = 2^{\log \varepsilon} = \varepsilon.$

G = (V, E) is a planar graph if G can be embedded on plane so no two edges cross.

Dual: D(G) = (F, D(E)) F = faces of embedding $D(E) = \left\{ \left\{ F_i, F_j \right\} | e \in E \text{ is between } F_i, F_j \right\}$

<u>Lemma</u>: If G is a planar embedded network, then max flow in G is same as min cost cycle in D(G) separating s,t.

Proof: We assume $c(F_i, F_j) = c(e)$, if e is between F_i, F_j . Then, by min-cost cut theorem, flow value = min cut X, \overline{X} between s, t = min cost cycle in D(G) separating s, t

G is <u>outerplanar</u> embedded if the planar embedding has face F_0 incident to all vertices.

Idea: To reduce to Min Cost Path Add new edge (S,t) with weight ∞.

Find min cost path from F_0 to F_0 (2in D(G)

 $= \min s \cdot t \text{ cut in } G$

= max flow value in G

Theorem: If G is outerplanar, we can find

max flow in $O(|V|\log|V|)$ time.

Lemma: [Reif] If $\mu(s,t)$ is a minimum cost path in D(G) from a face bounding on s to a face bounding on t, then any min cost cycle in D(G) separating s,t must contain an edge of $\mu(s,t)$.

Proof

Suppose not. Then we can shortcut any cycle of D(G) separating s,t to get a shorter one, using edges of the $\mu(s,t)$ path.

Theorem: [Reif] The min cost flow in a planar graph can be computed in $O(|V|\log^2|V|)$ time.

Proof: Idea: use $\mu(s,t)$ cut in D(G) to guide a recursive divide and conquer algorithm. On each step, divide the $\mu(s,t)$ path in half and solve the problem on each half, separately, using s,t cut as separator.

39