
What Is An Algorithm�

Algorithms are the ideas behind computer programs

An algorithm is the thing which stays the same whether
the program is in Pascal running on a Cray in New York
or is in BASIC running on a Macintosh in Kathmandu�

To be interesting� an algorithm has to solve a general�
speci�ed problem
 An algorithmic problem is speci�ed
by describing the set of instances it must work on and
what desired properties the output must have

Example� Sorting

Input� A sequence of N numbers a����an

Output� the permutation �reordering� of the input se�
quence such as a� � a� � � � � an

We seek algorithms which are correct and e�cient

Correctness

For any algorithm� we must prove that it always returns
the desired output for all legal instances of the problem

For sorting� this means even if ��� the input is already
sorted� or ��� it contains repeated elements

Correctness is Not Obvious�

The following problem arises often in manufacturing
and transportation testing applications

Suppose you have a robot arm equipped with a tool�
say a soldering iron
 To enable the robot arm to do
a soldering job� we must construct an ordering of the
contact points� so the robot visits �and solders� the
�rst contact point� then visits the second point� third�
and so forth until the job is done

Since robots are expensive� we need to �nd the order
which minimizes the time �ie
 travel distance� it takes
to assemble the circuit board

You are given the job to program the robot arm
 Give
me an algorithm to �nd the best tour�

Nearest Neighbor Tour

A very popular solution starts at some point p	 and
then walks to its nearest neighbor p� �rst� then repeats
from p�� etc
 until done

Pick and visit an initial point p	
p� p	
i� �
While there are still unvisited points

i� i��
Let pi be the closest unvisited point to pi��
Visit pi

Return to p	 from pi

This algorithm is simple to understand and implement
and very e�cient
 However� it is not correct	

-1 0 1 3 11-21 -5

-1 0 1 3 11-21 -5

Always starting from the leftmost point or any other
point will not �x the problem

Closest Pair Tour

Always walking to the closest point is too restrictive�
since that point might trap us into making moves we
don�t want

Another idea would be to repeatedly connect the clos�
est pair of points whose connection will not cause a
cycle or a three�way branch to be formed� until we
have a single chain with all the points in it

Let n be the number of points in the set
d��
For i � � to n� � do

For each pair of endpoints �x� y� of partial paths
If dist�x� y� � d then

xm � x� ym � y� d� dist�x� y�
Connect �xm� ym� by an edge

Connect the two endpoints by an edge

Although it works correctly on the previous example�
other data causes trouble�

This algorithm is not correct�

A Correct Algorithm

We could try all possible orderings of the points� then
select the ordering which minimizes the total length�

d��
For each of the n� permutations �i of the n points

If �cost��i� � d� then
d� cost��i� and Pmin � �i

Return Pmin

Since all possible orderings are considered� we are guar�
anteed to end up with the shortest possible tour

Because it trys all n� permutations� it is extremely slow�
much too slow to use when there are more than �����
points

No e�cient� correct algorithm exists for the traveling
salesman problem� as we will see later

E�ciency

�Why not just use a supercomputer��

Supercomputers are for people too rich and too stupid
to design e�cient algorithms�

A faster algorithm running on a slower computer will
always win for su�ciently large instances� as we shall
see

Usually� problems don�t have to get that large before
the faster algorithm wins

Expressing Algorithms

We need some way to express the sequence of steps
comprising an algorithm

In order of increasing precision� we have English� pseu�
docode� and real programming languages
 Unfortu�
nately� ease of expression moves in the reverse order

I prefer to describe the ideas of an algorithm in English�
moving to pseudocode to clarify su�ciently tricky de�
tails of the algorithm

The RAM Model

Algorithms are the only important� durable� and origi�
nal part of computer science because they can be stud�
ied in a machine and language independent way

The reason is that we will do all our design and analysis
for the RAM model of computation�

� Each �simple� operation ��� �� �� if� call� takes
exactly � step

� Loops and subroutine calls are not simple opera�
tions� but depend upon the size of the data and
the contents of a subroutine
 We do not want
�sort� to be a single step operation

� Each memory access takes exactly � step

We measure the run time of an algorithm by counting
the number of steps

This model is useful and accurate in the same sense as
the �at�earth model �which is useful��

Best� Worst� and Average�Case

The worst case complexity of the algorithm is the func�
tion de�ned by the maximum number of steps taken
on any instance of size n

1 2 3 4 N

of

Steps Worst Case

Complexity

Average Case

Complexity

Best Case
Complexity

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The best case complexity of the algorithm is the func�
tion de�ned by the minimum number of steps taken on
any instance of size n

The average�case complexity of the algorithm is the
function de�ned by an average number of steps taken
on any instance of size n

Each of these complexities de�nes a numerical function
� time vs
 size�

Insertion Sort

One way to sort an array of n elements is to start with
an empty list� then successively insert new elements in
the proper position�

a� � a� � � � � � ak j ak�� � � � an

At each stage� the inserted element leaves a sorted
list� and after n insertions contains exactly the right
elements
 Thus the algorithm must be correct

But how e�cient is it

Note that the run time changes with the permutation
instance� �even for a �xed size problem�

How does insertion sort do on sorted permutations

How about unsorted permutations

Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode
will be executed

Line InsertionSort�A� !Inst
 !Exec

� for j��� to len
 of A do c� n
� key��A"j# c� n��
� �$ put A"j# into A"�

j��# $� c��� �
� i��j�� c� n��
� while i � �%A"�# � key do c� tj
� A"i��#�� A"i# c�

 i �� i�� c

� A"i��#��key c� n��

The for statement is executed �n����� times �why �

Within the for statement� �key��A"j#� is executed n��
times

Steps �� ��
 are harder to count

Let tj � �� the number of elements that have to be
slide right to insert the jth item

Step � is executed t�� t�� ���� tn times

Step � is t���� t���� ���� tn��

Add up the executed instructions for all pseudocode
lines to get the run�time of the algorithm�

c��n�c��n����c��n���� c�
Pn

j�� tj� c�
Pn

j���tj���

�c�
Pn

j���tj � �� � c

What are the t�js They depend on the particular input

Best Case

If it�s already sorted� all tj�s are �

Hence� the best case time is

c�n� �c�� c�� c�� c
��n � �� � Cn�D

where C and D are constants

Worst Case

If the input is sorted in descending order� we will have
to slide all of the already�sorted elements� so tj � j�
and step � is executed

nX

j��

j � �n�� n���� �

Exact Analysis is Hard�

We have agreed that the best� worst� and average case
complexity of an algorithm is a numerical function of
the size of the instances

1 2 3 4

However� it is di�cult to work with exactly because it
is typically very complicated�

Thus it is usually cleaner and easier to talk about upper
and lower bounds of the function

This is where the dreaded big O notation comes in�

Since running our algorithm on a machine which is
twice as fast will e�ect the running times by a multi�
plicative constant of � � we are going to have to ignore
constant factors anyway

Names of Bounding Functions

Now that we have clearly de�ned the complexity func�
tions we are talking about

� g�n� � O�f�n�� means C� f�n� is an upper bound
on g�n�

� g�n� � &�f�n�� means C � f�n� is a lower bound
on g�n�

� g�n� � '�f�n�� means C��f�n� is an upper bound
on g�n� and C� � f�n� is a lower bound on g�n�

Got it

All of these de�nitions imply a constant n	 beyond
which they are satis�ed
 We do not care about small
values of n

O� �� and �

(a) (b) (c)

c2g(n)

f(n)

c1g(n)

cg(n)

f(n)

f(n) = O(g(n))

f(n)

cg(n)

nn n
n0 n0 n0

The value of n	 shown is the minimum possible value(
any greater value would also work

�a� f�n� � '�g�n�� if there exist positive constants n	�
c�� and c� such that to the right of n	� the value of
f�n� always lies between c� �g�n� and c� �g�n� inclusive

�b� f�n� � O�g�n�� if there are positive constants n	
and c such that to the right of n	� the value of f�n�
always lies on or below c � g�n�

�c� f�n� � &�g�n�� if there are positive constants n	
and c such that to the right of n	� the value of f�n�
always lies on or above c � g�n�

Asymptotic notation �O�'�&� are as well as we can
practically deal with complexity functions

What does all this mean�

�n� � ���n�� � O�n�� because �n� � �n� � ���n��

�n� � ���n�� � O�n�� because ���n� � �n� � ���n� �

�n� � ���n�� �� O�n� because c � n � �n� when n � c

�n� � ���n�� � &�n�� because ����n� � �n� � ���n��

�n� � ���n�� �� &�n�� because �n� � ���n�� � n�

�n� � ���n�� � &�n� because ���	
�	
n � �n� � ���� �

�n� � ���n�� � '�n�� because O and &

�n� � ���n�� �� '�n�� because O only

�n� � ���n�� �� '�n� because & only

Think of the equality as meaning in the set of functions

Note that time complexity is every bit as well de�ned
a function as sin�x� or you bank account as a function
of time

Testing Dominance

f�n� dominates g�n� if limn�� g�n��f�n� � �� which is
the same as saying g�n� � o�f�n��

Note the little�oh � it means �grows strictly slower
than�

Knowing the dominance relation between common func�
tions is important because we want algorithms whose
time complexity is as low as possible in the hierarchy

If f�n� dominates g�n�� f is much larger �ie
 slower�
than g

� na dominates nb if a � b since

lim
n��

nb�na � nb�a � �

� na � o�na� doesn�t dominate na since

lim
n��

nb��na � o�na�� �

Complexity �	 �	 �	 �	
n 	�				� sec 	�				� sec 	�				� sec 	�				� sec

n� 	�			� sec 	�			� sec 	�			� sec 	�	�� sec

n� 	�		� sec 	�		
 sec 	�	�� sec 	�	�� sec

n� 	�� sec ��� sec ���� sec ��� min
�n 	�		� sec ��	 sec ���� min ���� days

�n 	��� sec �
 min ��� years �
�� cent

Working with the Notation

Suppose f�n� � O�n�� and g�n� � O�n��

What do we know about g��n� � f�n� � g�n� Adding
the bounding constants shows g��n� � O�n��

What do we know about g���n� � f�n��g�n� Since the
bounding constants don�t necessary cancel� g���n� �
O�n��

We know nothing about the lower bounds on g� � g��

because we know nothing about lower bounds on f � g

Suppose f�n� � &�n�� and g�n� � &�n��

What do we know about g��n� � f�n� � g�n� Adding
the lower bounding constants shows g��n� � &�n��

What do we know about g���n� � f�n� � g�n� We
know nothing about the lower bound of this�

Problem ������

	a
 Is �n� � � O��n�

	b
 Is ��n � O��n�

�a� Is �n� � � O��n�

Is �n�� � c � �n

Yes� if c 	 � for all n

�b� Is ��n � O��n�

Is ��n � c � �n

note ��n � �n � �n

Is �n � �n � c � �n

Is �n � c

No� Certainly for any constant c we can �nd an n such
that this is not true

