
Rotations

The basic restructuring step for binary search trees are
left and right rotation�

Y

a b

c
X

X

Y
a

b c

a

b c

Y

X

a b

c
X

Y

�� Rotation is a local operation changing O��� point�
ers�

�� An in�order search tree before a rotation stays an
in�order search tree�

� In a rotation� one subtree gets one level closer to
the root and one subtree one level further from
the root�

LEFT�ROTATE�T�x�
y � right�x� �� Set y��
right�x� � left�y� �� Turn y�s left into x�s right��
if left�y� � NIL

then p�left�y�� � x
p�y� � p�x� �� Link x�s parent to y ��
if p�x� � NIL

then root�T � � y
else if x � left�p�x��

then left�p�x��� y
else right�p�x�� � y

left�y� � x
p�x�� y

Note the in�order property is preserved�

2

3

4

6

7

11

9 18

19

22

20

17

14

12

Left-Rotate(T, x)

7

4

3

3

6

18

19

22

201712

14

11

9

x

y

y

x higher

samelower

������ Show that any n�node tree can ve transformed
to any other using O�n� rotations �hint� convert to a
right going chain��

I will start by showing weaker bounds � that O�n��
and O�n logn� rotations su�ce � because that is how I
proceeded when I �rst saw the problem�

First� observe that creating a right�going� for t� path
from t� and reversing the same construction gives a
path from t� to t��

Note that it will take at most n rotations to make
the lowest valued key the root� Once it is root� all
keys are to the right of it� so no more rotations need
go through it to create a right�going chain� Repeating
with the second lowest key� third� etc� gives that O�n��
rotations su�ce�

Now that if we try to create a completely balanced tree
instead� To get the n�� key to the root takes at most
n rotations� Now each subtree has half the nodes and
we can recur���

N

N/2 N/2

N/4 N/4 N/4 N/4

To get a linear algorithm� we must beware of trees like�

1

2

3

4

5

6

7

8

9

10

11

12 1

2

3

4

5

6

7

8

9

The correct answer is n� � rotations su�ce to get to
a rightmost chain�

By picking the lowest node on the rightmost chain
which has a left ancestor� we can add one node per
rotation to the right most chain�

y

x z

x

y

zz

z

zz

Initially� the rightmost chain contained at least � node�
so after n� � rotations it contains all n� Slick�

Red�Black Insertion

Since red�black trees have ��lgn� height� if we can pre�
serve all properties of such trees under insertion�deletion�
we have a balanced tree�

Suppose we just did a regular insertion� Under what
conditions does it stay a red�black tree�

Since every insertion take places at a leaf� we will
change a black NIL pointer to a node with two black
NIL pointers�

?

To preserve the black height of the tree� the new node
must be red� If its new parent is black� we can stop�
otherwise we must restructure�

How can we �x two reds in a
row�

It depends upon our uncle�s color�

R

R R Assume

red uncle..

grandparent - MUST be black

Red

parent

Red

new node

If our uncle is red� reversing our relatives� color either
solves the problem or pushes it higher�

R

R

Note that after the recoloring�

�� The black height is unchanged�

�� The shape of the tree is unchanged�

� We are done if our great�grandparent is black�

If we get all the way to the root� recall we can always
color a red�black tree�s root black� We always will� so
initially it was black� and so this process terminates�

The Case of the Black Uncle

If our uncle was black� observe that all the nodes around
us have to be black�

R

R

B

A black uncle

For a RB tree, after a red

node was a black root
X

Left as RB trees by our color change or are nil

old red

new

red

Had to be

black given

red child.

Solution � rotate right about B�

R

A

B

X

Changing A to black is necessary

because of the color of X.

Then changing B to red

leaves everybodies

black height the same.

Since the root of the subtree is now black with the
same black�height as before� we have restored the col�
ors and can stop�

A double rotation can be required to set things up
depending upon the left�right turn sequence� but the
principle is the same�

DOUBLE ROTATION ILLUSTRATION

Pseudocode and Figures

Deletion from Red�Black Trees
Recall the three cases for deletion from a binary tree�

Case �a� The node to be deleted was a leaf�

A

Y

A

Possible color height change

Case �b� The node to be deleted had one child�

A

Y

A

B

B

Possible color height change

Case �c� relabel to node as its successor and delete the
successor�

A

B

B

A

Y

possible color height change

Keep this

node the

same color

as before

relabeling.

Deletion Color Cases

Suppose the node we remove was red� do we still have
a red�black tree�

Yes	 No two reds will be together� and the black height
for each leaf stays the same�

However� if the dead node y was black� we must give
each of its decendants another black ancestor� If an
appropriate node is red� we can simply color it black
otherwise we must restructure�

Case �a� black NIL becomes �double black��

Case �b� red � becomes black and black � becomes
�double black��

Case �c� red � becomes black and black � becomes
�double black��

Our goal will be to recolor and restructure the tree so
as to get rid of the �double black� node�

In setting up any case analysis� we must be sure that�

�� All possible cases are covered�

�� No case is covered twice�

In the case analysis for red�black trees� the breakdown
is�

Case �� The double black node x has a red brother�

Case �� x has a black brother and two black nephews�

Case
� x has a black brother� and its left nephew is
red and its right nephew is black�

Case
� x has a black brother� and its right nephew is
red �left nephew can be any color��

Conclusion

Red�Black trees let us implement all dictionary oper�
ations in O�logn�� Further� in no case are more than

 rotations done to rebalance� Certain very advanced
data structures have data stored at nodes which re�
quires a lot of work to adjust after a rotation � red�
black trees ensure it won�t happen often�

Example� Each node represents the endpoint of a line�
and is augmented with a list of segments in its subtree
which it intersects�

We will not study such complicated structures� how�
ever�

