Rotations

T he basic restructuring step for binary search trees are
left and right rotation:

Ao RA
O N S AN

1. Rotation is a local operation changing O(1) point-
ers.

2. An in-order search tree before a rotation stays an
in-order search tree.

3. In a rotation, one subtree gets one level closer to
the root and one subtree one level further from

the root.



LEFT-ROTATE(T,x)
y «— right[z] (* Set y*)
right[z] «— left[y] (* Turn y's left into z's right*)
if left[y] = NIL
then plleft[y]] — =
ply] « p[z] (* Link x’s parent to y *)
if p[x] = NIL
then root[T] «— y
else if ¢ = left[p[x]]
then left[p[z]] — y
else right[p[z]] — y
le_ft[y] — T
plz] —y

Note the in-order property is preserved.






14.2-5 Show that any n-node tree can ve transformed
to any other using O(n) rotations (hint: convert to a
right going chain).

I will start by showing weaker bounds - that O(n?)
and O(nlogn) rotations suffice - because that is how I
proceeded when I first saw the problem.

First, observe that creating a right-going, for t, path
from tq1 and reversing the same construction gives a
path from tq to t,.

Note that it will take at most n rotations to make
the lowest valued key the root. Once it is root, all
keys are to the right of it, so no more rotations need
go through it to create a right-going chain. Repeating
with the second lowest key, third, etc. gives that O(n?)
rotations suffice.

Now that if we try to create a completely balanced tree
instead. To get the n/2 key to the root takes at most
n rotations. Now each subtree has half the nodes and

we Can recur...
N

N/2 N/2

VAWA

N/4 N/4 N/4



To get a linear algorithm, we must beware of trees like:

g /jO ]
4
1 \Og \0\07
3
2 10 8
b % % 9
1

3 \ \ 1 \O
%
o

The correct answer is n — 1 rotations suffice to get to
a rightmost chain.

By picking the lowest node on the rightmost chain
which has a left ancestor, we can add one node per
rotation to the right most chain!

Jo

"
ot % O/Oﬁ\ ]

Yy /N x /Q
o ©>> o = k@

Initially, the rightmost chain contained at least 1 node,
so after n — 1 rotations it contains all n. Slick!



Red-Black Insertion

Since red-black trees have @(lg n) height, if we can pre-
serve all properties of such trees under insertion/deletion,
we have a balanced tree!

Suppose we just did a regular insertion. Under what
conditions does it stay a red-black tree?

Since every insertion take places at a leaf, we will
change a black NIL pointer to a node with two black

NIL pointers.

B

To preserve the black height of the tree, the new node
must be red. If its new parent is black, we can stop,
otherwise we must restructure!




How can we fix two reds In a
row?

It depends upon our uncle’s color:

Ked
R (R) e
red uncle..

Red
new node

grandparent - MUST be black

If our uncle is red, reversing our relatives’ color either
solves the problem or pushes it higher!

|
C/ @




Note that after the recoloring:
1. The black height is unchanged.
2. The shape of the tree is unchanged.
3. We are done if our great-grandparent is black.

If we get all the way to the root, recall we can always
color a red-black tree’s root black. We always will, so
initially it was black, and so this process terminates.



he Case of the Black Uncle

If our uncle was black, observe that all the nodes around
us have to be black:

Had to be B
black given
red child.

ﬁ black uncle

For aRB tree, after ared
node was a black root

old red A

new X
red

Left as RB trees by our color change or are nil

Solution - rotate right about B:

A Changing A to black is necessary
<——— because of the color of X.

® %‘
Since the root of the subtree is now black with the

same black-height as before, we have restored the col-
ors and can stop!

Then changing B to red
<—— leaveseverybodies
black height the same.



A double rotation can be required to set things up

depending upon the left-right turn sequence, but the
principle is the same.

DOUBLE ROTATION ILLUSTRATION



Pseudocode and Figures



Deletion from Red-Black Trees

Recall the three cases for deletion from a binary tree:

Case (a) The node to be deleted was a leaf;

/ /

Possible color height change

Case (c) relabel to node as its successor and delete the

SUcCcessor.
Keep this
—_ nodethe
same color
as before
e relabeling.

possible color hei ght change



Deletion Color Cases

Suppose the node we remove was red, do we still have
a red-black tree?

Yes! No two reds will be together, and the black height
for each leaf stays the same.

However, if the dead node y was black, we must give
each of its decendants another black ancestor. If an
appropriate node is red, we can simply color it black
otherwise we must restructure.

Case (a) black NIL becomes “double black”;

Case (b) red B8 becomes black and black B becomes
“double black”;

Case (c) red B becomes black and black 8 becomes
“double black”.

Our goal will be to recolor and restructure the tree so
as to get rid of the “double black” node.



In setting up any case analysis, we must be sure that:
1. AIll possible cases are covered.
2. No case is covered twice.

In the case analysis for red-black trees, the breakdown
is:

Case 1: The double black node = has a red brother.
Case 2: = has a black brother and two black nephews.

Case 3: z has a black brother, and its left nephew is
red and its right nephew is black.

Case 4: z has a black brother, and its right nephew is
red (left nephew can be any color).



Conclusion

Red-Black trees let us implement all dictionary oper-
ations in O(logn). Further, in no case are more than
3 rotations done to rebalance. Certain very advanced
data structures have data stored at nodes which re-
quires a lot of work to adjust after a rotation — red-
black trees ensure it won't happen often.

Example: Each node represents the endpoint of a line,
and is augmented with a list of segments in its subtree
which it intersects.

We will not study such complicated structures, how-
ever.





