
Optimization Problems

In the algorithms we have studied so far� correctness
tended to be easier than e	ciency� In optimization
problems� we are interested in
nding a thing which
maximizes or minimizes some function�

In designing algorithms for optimization problem � we
must prove that the algorithm in fact gives the best
possible solution�

Greedy algorithms� which makes the best local decision
at each step� occasionally produce a global optimum �
but you need a proof�

Dynamic Programming

Dynamic Programming is a technique for computing
recurrence relations e	ciently by sorting partial results�

Computing Fibonacci Numbers

Fn � Fn��� Fn��

F� �
� F� � �

Implementing it as a recursive procedure is easy but
slow�

We keep calculating the same value over and over�

F(3)

F(2)

F(1) F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(2)

F(1)

F(2)

F(1)

F(4)

F(3)

F(0)

F(1)

F(6)=12

F(5)

F(0)

F(0)

How slow is slow�

Fn���Fn � � � ���
p
���� � �����
�

Thus Fn � ���n� and since our recursion tree has
 and
� as leaves� means we have � ���n calls�

What about Dynamic
Programming�

We can calculate Fn in linear time by storing small
values�

F� �

F� � �
For i � � to n

Fi � Fi��� Fi��

Moral� we traded space for time�

Dynamic programming is a technique for e	ciently
computing recurrences by storing partial results�

Once you understand dynamic programming� it is usu�
ally easier to reinvent certain algorithms than try to
look them up�

Dynamic programming is best understood by looking
at a bunch of di�erent examples�

I have found dynamic programming to be one of the
most useful algorithmic techniques in practice�

� Morphing in Computer Graphics

� Data Compression for High Density Bar Codes

� Utilizing Gramatical Constraints for Telephone Key�
pads

Multiplying a Sequence of
Matrices

Suppose we want to multiply a long sequence of ma�
trices A�B � C �D � � ��

Multiplying an X � Y matrix by a Y � Z matrix �using
the common algorithm� takes X�Y �Z multiplications�

2 3

3 4

4 5

2 3 4

3 4 5

13 18 23

18 25 32

23 32 41

We would like to avoid big intermediate matrices� and
since matrix multiplication is associative� we can paren�
thesise however we want�

Matrix multiplication is not communitive� so we cannot
permute the order of the matrices without changing the
result�

Example

Consider A�B�C�D� where A is �
��� B is ���
�
C is �
� �
� and D is �
� ���

There are three possible parenthesizations�

��AB�C�D � �
����
��
��
��
��
��
��� � �
� �

�AB��CD� � �
����
��
��
�����
��
��� � ��� �

A��BC�D� � ���
��
����
�����
����� � ��

The order makes a big di�erence in real computation�
How do we
nd the best order�

Let M�i� j� be the minimum number of multiplications

necessary to compute
Qj
k�i

Ak�

The key observations are

� The outermost parentheses partition the chain of
matricies �i� j� at some k�

� The optimal parenthesization order has optimal or�
dering on either side of k�

A recurrence for this is�

M�i� j� � Mini�k�j���M�i� k� �M�k��� j� � di��dkdj�

M�i� j� �

If there are n matrices� there are n�� dimensions�

A direct recursive implementation of this will be expo�
nential� since there is a lot of duplicated work as in the
Fibonacci recurrence�

Divide�and�conquer is seems e	cient because there is
no overlap� but � � �

There are only

�
n
�

�
substrings between � and n� Thus

it requires only ��n�� space to store the optimal cost
for each of them�

We can represent all the possibilities in a triangle ma�
trix�

SHOW THE DIAGONAL MATRIX

We can also store the value of k in another triangle
matrix to reconstruct to order of the optimal paren�
thesisation�

The diagonal moves up to the right as the computation
progresses� On each element of the kth diagonal jj �
ij� k�

For the previous example�

SHOW BIG FIGURE OF THE MATRIX

Procedure MatrixOrder
for i� � to n do M�i� j� �

for diagonal � � to n� �

for i� � to n� diagonal do
j � i� diagonal

M�i� j� � min
j��
i�k

�M�i� k� �M�k��� j� � di��dkdj�
faster�i� j� � k

return �m��� n��

Procedure ShowOrder�i� j�
if �i� j� write �Ai�
else

k �factor�i� j�
write �C�
ShowOrder�i� k�
write ���
ShowOrder �k��� j�
write �j�

A dynamic programming
solution has three components�

�� Formulate the answer as a recurrence relation or
recursive algorithm�

�� Show that the number of di�erent instances of
your recurrence is bounded by a polynomial�

�� Specify an order of evaluation for the recurrence
so you always have what you need�

Approximate String Matching

A common task in text editing is string matching �

nding all occurrances of a word in a text�

Unfortunately� many words are mispelled� How can we
search for the string closest to the pattern�

Let p be a pattern string and T a text string over the
same alphabet�

A k�approximate match between P and T is a substring
of T with at most k di�erences�

Di�erences may be�

�� the corresponding characters may di�er� KAT�
CAT

�� P is missing a character from T � CAAT� CAT

�� T is missing a character from P � CT� CAT

Approximate Matching is important in genetics as well
as spell checking�

A ��Approximate Match

A match with one of each of three edit operations is�

P � unescessaraly

T � unnecessarily

Finding such a matching seems like a hard problem
because we must
gure out where you add blanks� but
we can solve it with dynamic programming�

D�i� j� � the minimum number of di�erences between
P�� P�� � � � � Pi and the segment of T ending at j�

D�i� j� is the minimum of the three possible ways to
extend smaller strings�

�� If Pi � ti then D�i� �� j � �� else D�i� �� j � ��� �
�corresponding characters do or do not match�

�� D�i� �� j��� �extra character in text � we do not
advance the pattern pointer��

�� D�i� j����� �character in pattern which is not in
text��

Once you accept the recurrence it is easy�

To
ll each cell� we need only consider three other cells�
not O�n� as in other examples� This means we need
only store two rows of the table� The total time is
O�mn��

Boundary conditions for string
matching

What should the value of D�
� i� be� corresponding to
the cost of matching the
rst i characters of the text
with none of the pattern�

It depends� Are we doing string matching in the text
or substring matching�

� If you want to match all of the pattern against all
of the text� this meant that would have to delete
the
rst i characters of the pattern� so D�
� i� � i
to pay the cost of the deletions�

� if we want to
nd the place in the text where the
pattern occurs� We do not want to pay more of
a cost if the pattern occurs far into the text than
near the front� so it is important that starting cost
be equal for all positions� In this case� D�
� i� �

� since we pay no cost for deleting the
rst i
characters of the text�

In both cases� D�i�
� � i� since we cannot excuse delet�
ing the
rst i characters of the pattern without cost�

SHOW FIGURE�TABLE OF DYNAMIC PROGRAM�
MING TABLE

What do we return�

If we want the cost of comparing all of the pattern
against all of the text� such as comparing the spelling
of two words� all we are interested in is D�n�m��

But what if we want the cheapest match between the
pattern anywhere in the text� Assuming the initial�
ization for substring matching� we seek the cheapest
matching of the full pattern ending anywhere in the
text� This means the cost equals min��i�mD�n� i��

This only gives the cost of the optimal matching� The
actual alignment � what got matched� substituted� and
deleted � can be reconstructed from the pattern�text
and table without an auxiliary storage� once we have
identi
ed the cell with the lowest cost�

How much space do we need�

Do we need to keep all O�mn� cells� since if we evaluate
the recurrence
lling in the columns of the matrix from
left to right� we will never need more than two columns
of cells to do what we need� Thus O�m� space is
su	cient to evaluate the recurrence without changing
the time complexity at all�

Unfortunately� because we won�t have the full matrix
we cannot reconstruct the alignment� as above�

Saving space in dynamic programming is very impor�
tant� Since memory on any computer is limited� O�nm�
space is more of a bottleneck than O�nm� time�

Fortunately� there is a clever divide�and�conquer algo�
rithm which computes the actual alignment in O�nm�
time and O�m� space�

