Optimization Problems

In the algorithms we have studied so far, correctness
tended to be easier than efficiency. In optimization
problems, we are interested in finding a thing which
maximizes or minimizes some function.

In designing algorithms for optimization problem - we
must prove that the algorithm in fact gives the best
possible solution.

Greedy algorithms, which makes the best local decision
at each step, occasionally produce a global optimum -
but you need a proof!

Dynamic Programming

Dynamic Programming is a technique for computing
recurrence relations efficiently by sorting partial results.

Computing Fibonacci Numbers

Fn=F, 1+ Fp >

FOZO,F]_:l

Implementing it as a recursive procedure is easy but
slow!

We keep calculating the same value over and over!

F(6)=12

F5) F4)

T 7N

F(4) F FG) F2)

VAR /N AN /N

F@) F2) F2) F) e Y Fy RO
/N

FQ FD ra ro FO FO) D) RO

F1) FO)

How slow is slow?

Foy1/Fa~¢=(14++5)/2~1.61803

Thus F, = 1.6™, and since our recursion tree has 0 and
1 as leaves, means we have =~ 1.6™ calls!

What about Dynamic
Programming?

We can calculate F, in linear time by storing small
values:

FOZO

F]_:l

For:=1ton
Fi,=F,_1+ F_>

Moral: we traded space for time.

Dynamic programming is a technique for efficiently
computing recurrences by storing partial results.

Once you understand dynamic programming, it is usu-
ally easier to reinvent certain algorithms than try to
look them up!

Dynamic programming is best understood by looking
at a bunch of different examples.

I have found dynamic programming to be one of the
most useful algorithmic techniques in practice:

e Morphing in Computer Graphics
e Data Compression for High Density Bar Codes

e Utilizing Gramatical Constraints for Telephone Key-
pads

Multiplying a Sequence of
Matrices

Suppose we want to multiply a long sequence of ma-
trices Ax BxC x D....

Multiplying an X x Y matrix by a Y x Z matrix (using
the common algorithm) takes X xY x Z multiplications.

2 3 13 18 23
2 3 4
3 4 3 4 5 18 25 3

We would like to avoid big intermediate matrices, and
since matrix multiplication is associative, we can paren-
thesise however we want.

Matrix multiplication is not communitive, so we cannot
permute the order of the matrices without changing the
result.

Example

Consider Ax BxC x D, where Ais30x 1, Bis 1 x40,
C is 40 x 10, and D is 10 x 25.

There are three possible parenthesizations:

((AB)C)D = 30x1x404+30x40x104+30x10x25 = 20,700
(AB)(CD) = 30x1x104+40x10x25+30x40x25 = 41,200

A((BC)D) = 1x40x104+1x10x25+4+30x1x25 = 1400

The order makes a big difference in real computation.
How do we find the best order?

Let M(s,5) be the minimum number of multiplications
necessary to compute Hi:i Ay,

The key observations are

e T he outermost parentheses partition the chain of
matricies (7,7) at some k.

e T heoptimal parenthesization order has optimal or-
dering on either side of k.

A recurrence for this is:

M(i,5) = Min<p<;_1[MG, k) + M(k+1,5) + d;_1dyd;]
M(i,5) = O

If there are n matrices, there are n + 1 dimensions.

A direct recursive implementation of this will be expo-
nential, since there is a lot of duplicated work as in the
Fibonacci recurrence.

Divide-and-conquer is seems efficient because there is
no overlap, but ...

There are only (72"

it requires only @(n2) space to store the optimal cost
for each of them.

) substrings between 1 and n. Thus

We can represent all the possibilities in a triangle ma-
trix:

SHOW THE DIAGONAL MATRIX

We can also store the value of k in another triangle
matrix to reconstruct to order of the optimal paren-
thesisation.

The diagonal moves up to the right as the computation
progresses. On each element of the kth diagonal |5 —
i| = k.

For the previous example:

SHOW BIG FIGURE OF THE MATRIX

Procedure MatrixOrder

fori=1 ton do M[:,j] =0

for diagonal =1 ton — 1

for : =1 to n — diagonal do

7 = 1+ dragonal
MTs, j] = mindZ [M[i, k] + Mk + 1,5] 4 d;_1dzd;]
faster(z,7) = k

return [m(1,n)]

Procedure ShowOrder(z, 5)

if (= 7) write (4;)

else
k =factor(s,7)
write “C”
ShowOrder(z, k)
write ‘¥
ShowOrder (k+1,7)
write “j”

A dynamic programming
solution has three components:

1. Formulate the answer as a recurrence relation or
recursive algorithm.

2. Show that the number of different instances of
your recurrence is bounded by a polynomial.

3. Specify an order of evaluation for the recurrence
so you always have what you need.

Approximate String Matching

A common task in text editing is string matching -
finding all occurrances of a word in a text.

Unfortunately, many words are mispelled. How can we
search for the string closest to the pattern?

Let p be a pattern string and T a text string over the
same alphabet.

A k-approximate match between P and T is a substring
of T with at most k differences.

Differences may be:

1. the corresponding characters may differ: KAT—
CAT

2. P is missing a character from T: CAAT — CAT
3. T is missing a character from P: CT— CAT

Approximate Matching is important in genetics as well
as spell checking.

A 3-Approximate Match
A match with one of each of three edit operations is:
P = unescessaraly
T = unnecessarily

Finding such a matching seems like a hard problem
because we must figure out where you add blanks, but
we can solve it with dynamic programming.

DIJi,j] = the minimum number of differences between
Py, P5,...,P;, and the segment of T ending at j;.

DIJi, j] is the minimum of the three possible ways to
extend smaller strings:

1. If P, =1t;, then D[t1—1,5—1] else D[z —1,5— 1]+ 1
(corresponding characters do or do not match)

2. D[i—1,7]+ 1 (extra character in text — we do not
advance the pattern pointer).

3. DJ[i,7 — 1] 4+ 1 (character in pattern which is not in
text).

Once you accept the recurrence it is easy.

To fill each cell, we need only consider three other cells,
not O(n) as in other examples. This means we need
only store two rows of the table. The total time is
O(mn).

Boundary conditions for string
matching

What should the value of D[0,:] be, corresponding to
the cost of matching the first : characters of the text
with none of the pattern?

It depends. Are we doing string matching in the text
or substring matching?

e If you want to match all of the pattern against all
of the text, this meant that would have to delete
the first 7 characters of the pattern, so D[0,7] =1
to pay the cost of the deletions.

e if we want to find the place in the text where the
pattern occurs? We do not want to pay more of
a cost if the pattern occurs far into the text than
near the front, so it is important that starting cost
be equal for all positions. In this case, D[0,7] =
0, since we pay no cost for deleting the first 2
characters of the text.

In both cases, DJ[i,0] = 7, since we cannot excuse delet-
ing the first z characters of the pattern without cost.

SHOW FIGURE/TABLE OF DYNAMIC PROGRAM-
MING TABLE

What do we return?

If we want the cost of comparing all of the pattern
against all of the text, such as comparing the spelling
of two words, all we are interested in is D[n,m].

But what if we want the cheapest match between the
pattern anywhere in the text? Assuming the initial-
ization for substring matching, we seek the cheapest
matching of the full pattern ending anywhere in the
text. This means the cost equals miny<;<,, D[n,1].

This only gives the cost of the optimal matching. The
actual alignment — what got matched, substituted, and
deleted — can be reconstructed from the pattern/text
and table without an auxiliary storage, once we have
identified the cell with the lowest cost.

How much space do we need?

Do we need to keep all O(mn) cells, since if we evaluate
the recurrence filling in the columns of the matrix from
left to right, we will never need more than two columns
of cells to do what we need. Thus O(m) space is
sufficient to evaluate the recurrence without changing
the time complexity at all.

Unfortunately, because we won’'t have the full matrix
we cannot reconstruct the alignment, as above.

Saving space in dynamic programming is very impor-
tant. Since memory on any computer is limited, O(nm)
space is more of a bottleneck than O(nm) time.

Fortunately, there is a clever divide-and-conquer algo-
rithm which computes the actual alignment in O(nm)
time and O(m) space.

