16.3-5 Give an $O\left(n^{2}\right)$ algorithm to find the longest montonically increasing sequence in a sequence of n numbers.

Build an example first: (5, $2,8,7,1,6,4$)
Ask yourself what would you like to know about the first $n-1$ elements to tell you the answer for the entire sequence?

1. The length of the longest sequence in $s_{1}, s_{2}, \ldots, s_{n-1}$. (seems obvious)
2. The length of the longest sequence s_{n} will extend! (not as obvious - this is the idea!)

Let s_{i} be the length of the longest sequence ending with the i th character:

sequence	5	2	8	7	3	1	6	4
s_{i}	1	1	2	2	2	1	3	3

How do we compute si?

$$
\begin{aligned}
& s_{i}=\max _{0<j<i, s e q[j]<s e q[i]} s_{j}+1 \\
& s_{0}=0
\end{aligned}
$$

To find the longest sequence - we know it ends somewhere, so Length $=\max _{i=1}^{n} s_{i}$

