The Principle of Optimality

To use dynamic programming, the problem must ob-
serve the principle of optimality, that whatever the ini-
tial state is, remaining decisions must be optimal with
regard the state following from the first decision.

Combinatorial problems may have this property but
may use too much memory/time to be efficient.

Example: The Traveling Salesman
Problem

Let T(¢;71,72,...,J%) be the cost of the optimal tour
for : to 1 that goes thru each of the other cities once

(301592, - -5 Ji) = Ming<m<pCle, imlT (Gm; 1,52, - - -5 k)

T(,5) =C(,5)+C>,1)

Here there can be any subset of j1,72,...,7% instead of
any subinterval - hence exponential.

Still, with other ideas (some type of pruning or best-
first search) it can be effective for combinatorial search.

SHOW PICTURE OF PRUNING TREE



When can you use Dynamic
Programming?

Dynamic programming computes recurrences efficiently
by storing partial results. Thus dynamic programming
can only be efficient when there are not too many par-
tial results to compute!

There are n! permutations of an n-element set — we
cannot use dynamic programming to store the best so-
lution for each subpermutation. There are 2™ subsets
of an n-element set — we cannot use dynamic program-
ming to store the best solution for each.

However, there are only n(n — 1)/2 continguous sub-
strings of a string, each described by a starting and
ending point, so we can use it for string problems.

There are only n(n —1)/2 possible subtrees of a binary
search tree, each described by a maximum and mini-
mum key, so we can use it for optimizing binary search
trees.

Dynamic programming works best on objects which
are linearly ordered and cannot be rearranged — char-
acters in a string, matrices in a chain, points around
the boundary of a polygon, the left-to-right order of
leaves in a search tree.

Whenever your objects are ordered in a left-to-right
way, you should smell dynamic programming!



Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting
diagonals which partiions the polygon into diagonals.

The length of a triangulation is the sum of the diagonal
lengths.

We seek to find the minimum length triangulation. For
a convex polygon, or part thereof:

k

Once we identify the correct connecting vertex, the
polygon is partitioned into two smaller pieces, both of
which must be triangulated optimally!

t[,2+1] = O

j
tli,j] = mintli, k] + t[k, j] + [ek| + [KJ]



Evaluation proceeds as in the matrix multiplication ex-
ample - (g) values of ¢, each of which takes O(j — 1)

time if we evaluate the sections in order of increasing
size.

1 Ji=2
13, 24, 35, 46, 51, 62

Ji=3
14, 25, 36, 41, 52, 63

Ji=4

15, 26, 31, 42, 53, 64
Finish with 16

What if there are points in the interior of the polygon?



Dynamic Programming and
High Density Bar Codes

Symbol Technology has developed a new design for bar
codes, PDF-417 that has a capacity of several hundred
bytes. What is the best way to encode text for this
design?

They developed a complicated mode-switching data
compression scheme.

Latch commands permanently put you in a different
mode. Shift commands temporarily put you in a dif-
ferent mode.



Originally, Symbol used a greedy algorithm to encode
a string, making local decisions only. We realized that
for any prefix, you want an optimal encoding which
might leave you in every possible mode.

The Quick Brown Fox

Alpha
Lower
Mixed
Punct.

M][i, 5] = min(M][: — 1, k]+ the cost of encoding the ith
character and ending up in node j.

Our simple dynamic programming algorithm improved
to capacity of PDF-417 by an average of 8%!



Dynamic Programming and
Morphing

Morphing is the problem of creating a smooth series of
intermediate images given a starting and ending image.

The key problem is establishing a correspondence be-
tween features in the two images. You want to morph
an eye to an eye, not an ear to an ear.

We can do this matching on a line-by-line basis:
Object A’s segments
T=0 _ _ N
T=05 J: \J N :l
T=1 _ _

Object B’s segments

T his should sound like string matching, but with a dif-
ferent set of operations:

o [Full run match: We may match run 2z on top to
run 37 on bottom for a cost which is a function of
the difference in the lengths of the two runs and
their positions.

e Merging runs: We may match a string of consecu-
tive runs on top to a run on bottom. The cost will
be a function of the number of runs, their relative
positions, and lengths.



e Splitting runs: We may match a big run on top to
a string of consecutive runs on the bottom. This
is just the converse of the merge. Again, the cost
will be a function of the number of runs, their
relative positions, and lengths.

This algorithm was incorported into a morphing sys-
tem, with the following results:






