The Principle of Optimality

To use dynamic programming, the problem must ob-
serve the principle of optimality, that whatever the ini-
tial state is, remaining decisions must be optimal with
regard the state following from the first decision.

Combinatorial problems may have this property but
may use too much memory/time to be efficient.

Example: The Traveling Salesman
Problem

Let T(¢;71,72,...,J%) be the cost of the optimal tour
for : to 1 that goes thru each of the other cities once
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Here there can be any subset of j1,72,...,7% instead of
any subinterval - hence exponential.

Still, with other ideas (some type of pruning or best-
first search) it can be effective for combinatorial search.
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When can you use Dynamic
Programming?

Dynamic programming computes recurrences efficiently
by storing partial results. Thus dynamic programming
can only be efficient when there are not too many par-
tial results to compute!

There are n! permutations of an n-element set — we
cannot use dynamic programming to store the best so-
lution for each subpermutation. There are 2™ subsets
of an n-element set — we cannot use dynamic program-
ming to store the best solution for each.

However, there are only n(n — 1)/2 continguous sub-
strings of a string, each described by a starting and
ending point, so we can use it for string problems.

There are only n(n —1)/2 possible subtrees of a binary
search tree, each described by a maximum and mini-
mum key, so we can use it for optimizing binary search
trees.

Dynamic programming works best on objects which
are linearly ordered and cannot be rearranged — char-
acters in a string, matrices in a chain, points around
the boundary of a polygon, the left-to-right order of
leaves in a search tree.

Whenever your objects are ordered in a left-to-right
way, you should smell dynamic programming!



Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting
diagonals which partiions the polygon into diagonals.

The length of a triangulation is the sum of the diagonal
lengths.

We seek to find the minimum length triangulation. For
a convex polygon, or part thereof:

k

Once we identify the correct connecting vertex, the
polygon is partitioned into two smaller pieces, both of
which must be triangulated optimally!

t[,2+1] = O

j
tli,j] = mintli, k] + t[k, j] + [ek| + [KJ]



Evaluation proceeds as in the matrix multiplication ex-
ample - (g) values of ¢, each of which takes O(j — 1)

time if we evaluate the sections in order of increasing
size.

1 Ji=2
13, 24, 35, 46, 51, 62

Ji=3
14, 25, 36, 41, 52, 63

Ji=4

15, 26, 31, 42, 53, 64
Finish with 16

What if there are points in the interior of the polygon?



Dynamic Programming and
High Density Bar Codes

Symbol Technology has developed a new design for bar
codes, PDF-417 that has a capacity of several hundred
bytes. What is the best way to encode text for this
design?

They developed a complicated mode-switching data
compression scheme.

Latch commands permanently put you in a different
mode. Shift commands temporarily put you in a dif-
ferent mode.



Originally, Symbol used a greedy algorithm to encode
a string, making local decisions only. We realized that
for any prefix, you want an optimal encoding which
might leave you in every possible mode.

The Quick Brown Fox
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M][i, 5] = min(M][: — 1, k]+ the cost of encoding the ith
character and ending up in node j.

Our simple dynamic programming algorithm improved
to capacity of PDF-417 by an average of 8%!



Dynamic Programming and
Morphing

Morphing is the problem of creating a smooth series of
intermediate images given a starting and ending image.

The key problem is establishing a correspondence be-
tween features in the two images. You want to morph
an eye to an eye, not an ear to an ear.

We can do this matching on a line-by-line basis:
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Object B’s segments

T his should sound like string matching, but with a dif-
ferent set of operations:

o [Full run match: We may match run 2z on top to
run 37 on bottom for a cost which is a function of
the difference in the lengths of the two runs and
their positions.

e Merging runs: We may match a string of consecu-
tive runs on top to a run on bottom. The cost will
be a function of the number of runs, their relative
positions, and lengths.



e Splitting runs: We may match a big run on top to
a string of consecutive runs on the bottom. This
is just the converse of the merge. Again, the cost
will be a function of the number of runs, their
relative positions, and lengths.

This algorithm was incorported into a morphing sys-
tem, with the following results:






