
The Principle of Optimality

To use dynamic programming� the problem must ob�
serve the principle of optimality� that whatever the ini�
tial state is� remaining decisions must be optimal with
regard the state following from the �rst decision�

Combinatorial problems may have this property but
may use too much memory�time to be e�cient�

Example� The Traveling Salesman
Problem

Let T �i� j�� j�� � � � � jk� be the cost of the optimal tour
for i to � that goes thru each of the other cities once

T �i� i�� j�� � � � � ji� �Min��m�kC�i� jm�T �jm� j�� j�� � � � � jk�

T �i� j� � C�i� j� � C�j� ��

Here there can be any subset of j�� j�� � � � � jk instead of
any subinterval � hence exponential�

Still� with other ideas �some type of pruning or best�
�rst search� it can be e�ective for combinatorial search�

SHOW PICTURE OF PRUNING TREE

When can you use Dynamic
Programming�

Dynamic programming computes recurrences e�ciently
by storing partial results� Thus dynamic programming
can only be e�cient when there are not too many par�
tial results to compute

There are n
 permutations of an n�element set � we
cannot use dynamic programming to store the best so�
lution for each subpermutation� There are �n subsets
of an n�element set � we cannot use dynamic program�
ming to store the best solution for each�

However� there are only n�n � ���� continguous sub�
strings of a string� each described by a starting and
ending point� so we can use it for string problems�

There are only n�n����� possible subtrees of a binary
search tree� each described by a maximum and mini�
mum key� so we can use it for optimizing binary search
trees�

Dynamic programming works best on objects which

are linearly ordered and cannot be rearranged � char�

acters in a string� matrices in a chain� points around

the boundary of a polygon� the left�to�right order of

leaves in a search tree�

Whenever your objects are ordered in a left�to�right
way� you should smell dynamic programming

Minimum Length Triangulation

A triangulation of a polygon is a set of non�intersecting
diagonals which partiions the polygon into diagonals�

The length of a triangulation is the sum of the diagonal
lengths�

We seek to �nd the minimum length triangulation� For
a convex polygon� or part thereof�

i j

k

Once we identify the correct connecting vertex� the
polygon is partitioned into two smaller pieces� both of
which must be triangulated optimally

t�i� i� �� � �

t�i� j� �
j

min
k�i

t�i� k� � t�k� j� � jikj� jkjj

Evaluation proceeds as in the matrix multiplication ex�

ample �

�
n
�

�
values of t� each of which takes O�j � i�

time if we evaluate the sections in order of increasing
size�

1

6

5

4

3

2

J-i = 2

13, 24, 35, 46, 51, 62

J-i = 3

14, 25, 36, 41, 52, 63

J-i = 4

15, 26, 31, 42, 53, 64

Finish with 16

What if there are points in the interior of the polygon�

Dynamic Programming and
High Density Bar Codes

Symbol Technology has developed a new design for bar
codes� PDF�
�� that has a capacity of several hundred
bytes� What is the best way to encode text for this
design�

They developed a complicated mode�switching data
compression scheme�

MIXEDLOWER

 CASE

OTHER

CHARS

ALPHA

latch
latch

latch

shift

latch

shiftlatch

shift

latch

Latch commands permanently put you in a di�erent
mode� Shift commands temporarily put you in a dif�
ferent mode�

Originally� Symbol used a greedy algorithm to encode
a string� making local decisions only� We realized that
for any pre�x� you want an optimal encoding which
might leave you in every possible mode�

X

Alpha
Lower
Mixed
Punct.

The Quick Brown Fox

M�i� j� � min�M�i��� k�� the cost of encoding the ith
character and ending up in node j�

Our simple dynamic programming algorithm improved
to capacity of PDF�
�� by an average of ��

Dynamic Programming and
Morphing

Morphing is the problem of creating a smooth series of
intermediate images given a starting and ending image�

The key problem is establishing a correspondence be�
tween features in the two images� You want to morph
an eye to an eye� not an ear to an ear�

We can do this matching on a line�by�line basis�

T = 0

T = 1

T = 0.5

Object A’s segments

Object B’s segments

This should sound like string matching� but with a dif�
ferent set of operations�

� Full run match	 We may match run i on top to
run j on bottom for a cost which is a function of
the di�erence in the lengths of the two runs and
their positions�

� Merging runs	 We may match a string of consecu�
tive runs on top to a run on bottom� The cost will
be a function of the number of runs� their relative
positions� and lengths�

� Splitting runs	 We may match a big run on top to
a string of consecutive runs on the bottom� This
is just the converse of the merge� Again� the cost
will be a function of the number of runs� their
relative positions� and lengths�

This algorithm was incorported into a morphing sys�
tem� with the following results�

