
Problem Solving Techniques

Most important� make sure you understand exactly
what the question is asking � if not� you have no hope
of answer it��

Never be afraid to ask for another explanation of a
problem until it is clear�

Play around with the problem by constructing examples
to get insight into it�

Ask yourself questions� Does the �rst idea which comes
into my head work� If not� why not�

Am I using all information that I am given about the
problem�

Read Polya�s book How to Solve it�

����� The Euclidian traveling�salesman problem is the
problem of determining the shortest closed tour that
connects a given set of n points in the plane�

Bentley suggested simplifying the problem by restrict�
ing attention to bitonic tours� that is tours wich start
at the leftmost point� go strictly left to right to the
rightmost point� and then go strictly right back to the
starting point�

non-bitonic bitonic

Describe an O�n�	 algorithm for �nding the optimal
bitonic tour� You may assume that no two points have
the same x�coordinate� �Hint� scan left to right� main�
taining optimal possibilities for the two parts of the
tour��

Make sure you understand what a bitonic tour is� or
else it is hopeless�

First of all� play with the problem� Why isn�t it trivial�

" Hey, I guess I can’t tell an

upper point from a lower point"

"Hey, i guess that I can have

an arbitrary number of upper

or lower points in a row."

"Hey, I guess this tour

can zig-zag a lot."

Am I using all the information�

Why will they let us assume that no two x
coordinates
are the same� What does the hint mean� What hap

pens if I scan from left to right�

If we scan from left to right� we get an open tour which
uses all points to the left of our scan line�

In the optimal tour� the kth point is connected to ex

actly one point to the left of k� �k �� n	 Once I decide
which point that is� say x� I need the optimal partial
tour where the two endpoints are x and k� �� because
if it isn�t optimal I could come up with a better one�

Hey� I have got a recurrence� And look� the two pa

rameters which describe my optimal tour are the two
endpoints�

Let c
k� n� be the optimal cost partial tour where the
two endpoints are k � n�

c
k� n� � c
k� n� �� � d
n� n� �� �when k � n� �	

c
n� �� n� � c
k� n� �� � d
k� n�

c
���� � d
�� ��

0 1 2 3

0

1

2

3

N

K

d(0, 1)

Filling the entities in from N=1 to N’, k=1 to N, means we

always have what we need waiting for us.

c
n� �� n� takes O�n	 to update� c
k� n� k � n� � takes
O��	 to update� Total time is O�n�	�

But this doesn�t quite give the tour� but just an open
tour� We simply must �gure where the last edge to n

must go�

Tourcost �
n

min
k��

C
k� n� � dkn

Graphs

A graph G consists of a set of vertices V together with
a set E of vertex pairs or edges�

Graphs are important because any binary relation is a
graph� so graph can be used to represent essentially
any relationship�

Example� A network of roads� with cities as vertices
and roads between cities as edges�

vertices - cities

edges - roads

Stony Brook Green Port

Orient Point

Montauk

Shelter Island

Sag Harbor

Riverhead

Islip

Example� An electronic circuit� with junctions as ver

tices as components as edges�

vertices: junctions

edges: components

To understand many problems� we must think of them
in terms of graphs�

The Friendship Graph

Consider a graph where the vertices are people� and
there is an edge between two people if and only if they
are friends�

George Bush

Saddam Hussain

Ronald Reagan Frank Sinatra

Nancy Reagan

This graph is well
de�ned on any set of people� SUNY
SB� New York� or the world�

What questions might we ask about the friendship
graph�

� If I am your friend� does that mean you are

my friend�

A graph is undirected if �x� y	 implies �y� x	� Other

wise the graph is directed� The �heard
of� graph
is directed since countless famous people have never
heared of me� The �had
sex
with� graph is pre

sumably undirected� since it requires a partner�

� Am I my own friend�

An edge of the form �x� x	 is said to be a loop�
If x is y�s friend several times over� that could be
modeled using multiedges� multiple edges between
the same pair of vertices� A graph is said to be
simple if it contains no loops and multiple edges�

� Am I linked by some chain of friends to the

President�

A path is a sequence of edges connecting two ver

tices� Since Mel Brooks is my father�s
sister�s

husband�s cousin� there is a path between me and
him�

Steve Dad Aunt Eve Uncle Lenny Cousin Mel

� How close is my link to the President�

If I were trying to impress you with how tight I
am with Mel Brooks� I would be much better o�
saying that Uncle Lenny knows him than to go into
the details of how connected I am to Uncle Lenny�
Thus we are often interested in the shortest path
between two nodes�

� Is there a path of friends between any two

people�

A graph is connected if there is a path between
any two vertices� A directed graph is strongly con�
nected if there is a directed path between any two
vertices�

� Who has the most friends�

The degree of a vertex is the number of edges
adjacent to it�

� What is the largest clique�

A social clique is a group of mutual friends who all
hang around together� A graph theoretic clique is
a complete subgraph� where each vertex pair has
an edge between them� Cliques are the densest
possible subgraphs� Within the friendship graph�
we would expect that large cliques correspond to
workplaces� neighborhoods� religious organizations�
schools� and the like�

� How long will it take for my gossip to get back

to me�

A cycle is a path where the last vertex is adjacent
to the �rst� A cycle in which no vertex repeats
�such as �
�
�
� verus �
�
�
�
�	 is said to be
simple� The shortest cycle in the graph de�nes its
girth� while a simple cycle which passes through
each vertex is said to be a Hamiltonian cycle�

Data Structures for Graphs

There are two main data structures used to represent
graphs�

Adjacency Matrices

An adjacency matrix is an n�n matrix� where M
i� j� �
� i� there is no edge from vertex i to vertex j

1 2

3

45

0 1 0 0 1

1 0 1 1 1

0 1 1 0 1

0 1 0 1 0

1 1 0 1 0

It takes ���	 time to test if edge �i� j	 is in a graph
represented by an adjacency matrix�

Can we save space if ��	 the graph is undirected� ��	
if the graph is sparse�

Adjacency Lists

An adjacency list consists of a Nx� array of pointers�
where the ith element points to a linked list of the
edges incident on vertex i�

1 2

3

45

1

2

3

4

5

2 3

1 5 3 4

2 4

2 5 3

4 1 2

To test if edge �i� j	 is in the graph� we search the ith
list for j� which takes O�di	� where di is the degree of
the ith vertex�

Note that di can be much less than n when the graph
is sparse� If necessory� the two copies of each edge can
be linked by a pointer to facilitate deletions�

Tradeo�s Between Adjacency
Lists and Adjacency Matrices

Comparison Winner

Faster to test if �x� y	 exists� matrices
Faster to �nd vertex degree� lists

Less memory on small graphs� lists �m� n	 vs� �n�	
Less memory on big graphs� matrices �small win	
Edge insertion or deletion� matrices O��	

Faster to traverse the graph� lists m� n vs� n�

Better for most problems� lists

Both representations are very useful and have di�erent
properties� although adjacency lists are probably better
for most problems�

Traversing a Graph

One of the most fundamental graph problems is to
traverse every edge and vertex in a graph� Applications
include�

� Printing out the contents of each edge and vertex�

� Counting the number of edges�

� Identifying connected components of a graph�

For e	ciency� we must make sure we visit each edge
at most twice�

For correctness� we must do the traversal in a system

atic way so that we don�t miss anything�

Since a maze is just a graph� such an algorithmmust be
powerful enough to enable us to get out of an arbitrary
maze�

Marking Vertices

The idea is that we must mark each vertex when we
�rst visit it� and keep track of what have not yet com�
pletely explored�

For each vertex� we can maintain two �ags�

� discovered
 have we ever encountered this vertex
before�

� completely�explored
 have we �nished exploring
this vertex yet�

We must also maintain a structure containing all the
vertices we have discovered but not completely ex

plored�

Initially� only a single start vertex is considered to be
discovered�

To completely explore a vertex� we look at each edge
going out of it� For each edge which goes to an undis

covered vertex� we mark it discovered and add it to the
list of work to do�

Note that regardless of what order we fetch the next
vertex to explore� each edge is considered exactly twice�
when each of its endpoints are explored�

Every edge and vertex in the connected componant is
eventually visited�

Suppose not� ie� there exists a vertex which was un

visited whose neighbor was visited� This neighbor will
eventually be explored so we would visit it�

Traversal Orders

The order we explore the vertices depends upon what
kind of data structure is used�

� Queue � by storing the vertices in a �rst
in� �rst
out �FIFO	 queue� we explore the oldest unex

plored vertices �rst� Thus our explorations radiate
out slowly from the starting vertex� de�ning a so

called breadth��rst search�

� Stack
 by storing the vertices in a last
in� �rst

out �LIFO	 stack� we explore the vertices by lurch

ing along a path� constantly visiting a new neigh

bor if one is available� and backing up only if we
are surrounded by previously discovered vertices�
Thus our explorations quickly wander away from
our starting point� de�ning a so
called depth��rst
search�

The three possible colors of each node re�ect if it is
unvisited �white	� visited but unexplored �grey	 or com

pletely explored �black	�

Breadth�First Search

BFS�G�s	
for each vertex u � V
G�� fsg

do color
u� � white
d
u� ��� ie� the distance from s

p
u� � NIL� ie� the parent in the DFS tree
color
u� � grey
d
s� � �
p
s� � NIL

Q� fsg
while Q �� �

do u � head
Q�
for each uinAdj
u�

do if color
v� � white then
color
v� � gray

d
v� � d
u� � �
p
v� � u

enqueue
Q�v�
dequeue
Q�
color
u� � black

INCLUDE CLR PICTURE OF BFS IN ACTION�

Depth�First Search

DFS has a neat recursive implementation which elimi

nates the need to explicitly use a stack�

Discovery and �nal times are sometimes a convenience
to maintain�

ENTER DFS ALGORITHM

INCLUDE CLR PICTURE OF DFS IN ACTION�

