Problem Solving Techniques

Most important: make sure you understand exactly
what the question is asking — if not, you have no hope
of answer it!!

Never be afraid to ask for another explanation of a
problem until it is clear.

Play around with the problem by constructing examples
to get insight into it.

Ask yourself questions. Does the first idea which comes
into my head work? If not, why not?

Am I using all information that I am given about the
problem?

Read Polya’s book How to Solve it.

16-1: The Euclidian traveling-salesman problem is the
problem of determining the shortest closed tour that
connects a given set of n points in the plane.

Bentley suggested simplifying the problem by restrict-
ing attention to bitonic tours, that is tours wich start
at the leftmost point, go strictly left to right to the
rightmost point, and then go strictly right back to the
starting point.

non-bitonic bitonic

Describe an O(n?) algorithm for finding the optimal
bitonic tour. You may assume that no two points have
the same z-coordinate. (Hint: scan left to right, main-
taining optimal possibilities for the two parts of the
tour.)

Make sure you understand what a bitonic tour is, or
else it is hopeless.

First of all, play with the problem. Why isn't it trivial?

O O < "Hey, I guessthistour
< p canzig-zag alot."

o

O o0
ol el
Hey, i guessthat | can have

an arbitrary number of upper
" Hey, | guess| can’t tell an or lower pointsin arow."
upper point from alower point"

Am I using all the information?

Why will they let us assume that no two z-coordinates
are the same? What does the hint mean? What hap-
pens if I scan from left to right?

If we scan from left to right, we get an open tour which
uses all points to the left of our scan line.

-

>

In the optimal tour, the kth point is connected to ex-
actly one point to the left of k. (kK # n) Once I decide
which point that is, say . I need the optimal partial
tour where the two endpoints are z and k— 1, because
if it isn't optimal I could come up with a better one.

Hey, I have got a recurrence! And look, the two pa-
rameters which describe my optimal tour are the two
endpoints.

Let c[k,n] be the optimal cost partial tour where the
two endpoints are k < n.

clk,n] < c[k,n — 1] +d[n,n — 1] (when E<n—1)
c[n - 17"’] S c[k,n - 1] + d[kan]
c[0, 1] = d[0, 1]

0 1 2 3
0 d0.) | —
1 /] \

? |V

Filling the entitiesin from N=1to N’, k=1to N, meanswe
always have what we need waiting for us.

c[n — 1,n] takes O(n) to update, c[k,n] k < n — 1 takes
O(1) to update. Total time is O(n?).

But this doesn’t quite give the tour, but just an open
tour. We simply must figure where the last edge to n
must go.

n
Tourcost = Il;nllil Clk,n] + dg,

Graphs

A graph G consists of a set of vertices V together with
a set E of vertex pairs or edges.

Graphs are important because any binary relation is a
graph, so graph can be used to represent essentially
any relationship.

Example: A network of roads, with cities as vertices
and roads between cities as edges.

Stony Brook Green Port
vertices - cities
Riverhead
edges - roads
/O\ Shelter Idland

Idlip Sag Harbor

Orient Point

Montauk

Example: An electronic circuit, with junctions as ver-
tices as components as edges.

vertices: junctions

{] edges: components

To understand many problems, we must think of them
in terms of graphs!

The Friendship Graph

Consider a graph where the vertices are people, and
there is an edge between two people if and only if they

are friends.
O

Saddam Hussain

This graph is well-defined on any set of people: SUNY
SB, New York, or the world.

What questions might we ask about the friendship
graph?

e If I am your friend, does that mean you are
my friend?

A graph is undirected if (z,y) implies (y,z). Other-

wise the graph is directed. The “heard-of” graph

is directed since countless famous people have never
heared of me! The “had-sex-with” graph is pre-

sumably undirected, since it requires a partner.

e AmM I my own friend?

An edge of the form (z,z) is said to be a loop.
If z is y's friend several times over, that could be
modeled using multiedges, multiple edges between
the same pair of vertices. A graph is said to be
simple if it contains no loops and multiple edges.

e Am I linked by some chain of friends to the
President?

A path is a sequence of edges connecting two ver-
tices. Since Mel Brooks is my father's-sister’s-
husband’s cousin, there is a path between me and
him!

O O

Steve Dad Aunt Eve Uncle Lenny Cousin Méel

e How close is my link to the President?

If I were trying to impress you with how tight I
am with Mel Brooks, I would be much better off
saying that Uncle Lenny knows him than to go into
the details of how connected I am to Uncle Lenny.
Thus we are often interested in the shortest path
between two nodes.

o Is there a path of friends between any two
people?

A graph is connected if there is a path between
any two vertices. A directed graph is strongly con-
nected if there is a directed path between any two
vertices.

¢ Who has the most friends?

The degree of a vertex is the number of edges
adjacent to it.

e What is the largest clique?

A social clique is a group of mutual friends who all
hang around together. A graph theoretic clique is
a complete subgraph, where each vertex pair has
an edge between them. Cliques are the densest
possible subgraphs. Within the friendship graph,
we would expect that large cliques correspond to
workplaces, neighborhoods, religious organizations,
schools, and the like.

¢ How long will it take for my gossip to get back
to me?

A cycle is a path where the last vertex is adjacent
to the first. A cycle in which no vertex repeats
(such as 1-2-3-1 verus 1-2-3-2-1) is said to be
simple. The shortest cycle in the graph defines its
girth, while a simple cycle which passes through
each vertex is said to be a Hamiltonian cycle.

Data Structures for Graphs

There are two main data structures used to represent
graphs.

Adjacency Matrices

An adjacency matrixis an nxn matrix, where M][i, 7] =
O iff there is no edge from vertex : to vertex j

00000

O—F N 1011
e |

11111
E—®

11111

It takes ©(1) time to test if edge (7,7) is in a graph
represented by an adjacency matrix.

Can we save space if (1) the graph is undirected? (2)
if the graph is sparse?

Adjacency Lists

An adjacency list consists of a Nx1 array of pointers,
where the ith element points to a linked list of the
edges incident on vertex z.

[
] L] [#]
[[«
I

c“e %

gl p| w| NP

To test if edge (4,7) is in the graph, we search the ith
list for j, which takes O(d;), where d; is the degree of
the th vertex.

Note that d; can be much less than n when the graph
is sparse. If necessory, the two copies of each edge can
be linked by a pointer to facilitate deletions.

Tradeoffs Between Adjacency
Lists and Adjacency Matrices

Comparison Winner
Faster to test if (z,y) exists? matrices
Faster to find vertex degree? lists

Less memory on small graphs?

lists (m +n) vs. (n?)

Less memory on big graphs?

matrices (small win)

Edge insertion or deletion?

matrices O(1)

Faster to traverse the graph?

lists m + n vs. n?

Better for most problems?

lists

Both representations are very useful and have different
properties, although adjacency lists are probably better

for most problems.

Traversing a Graph

One of the most fundamental graph problems is to
traverse every edge and vertex in a graph. Applications
include:

e Printing out the contents of each edge and vertex.
e Counting the number of edges.
e Identifying connected components of a graph.

For efficiency, we must make sure we visit each edge
at most twice.

For correctness, we must do the traversal in a system-
atic way so that we don’t miss anything.

Since a mazeis just a graph, such an algorithm must be
powerful enough to enable us to get out of an arbitrary
maze.

Marking Vertices

The idea is that we must mark each vertex when we
first visit it, and keep track of what have not yet com-
pletely explored.

For each vertex, we can maintain two flags:

e discovered - have we ever encountered this vertex
before?

e completely-explored - have we finished exploring
this vertex yet?

We must also maintain a structure containing all the
vertices we have discovered but not completely ex-
plored.

Initially, only a single start vertex is considered to be
discovered.

To completely explore a vertex, we look at each edge
going out of it. For each edge which goes to an undis-
covered vertex, we mark it discovered and add it to the
list of work to do.

Note that regardless of what order we fetch the next
vertex to explore, each edge is considered exactly twice,
when each of its endpoints are explored.

Every edge and vertex in the connected componant is
eventually visited.

Suppose not, ie. there exists a vertex which was un-
visited whose neighbor was visited. This neighbor will
eventually be explored so we would visit it:

Traversal Orders

The order we explore the vertices depends upon what
kind of data structure is used:

e Queue — by storing the vertices in a first-in, first
out (FIFO) queue, we explore the oldest unex-
plored vertices first. Thus our explorations radiate
out slowly from the starting vertex, defining a so-
called breadth-first search.

e Stack - by storing the vertices in a last-in, first-
out (LIFO) stack, we explore the vertices by lurch-
ing along a path, constantly visiting a new neigh-
bor if one is available, and backing up only if we
are surrounded by previously discovered vertices.
Thus our explorations quickly wander away from
our starting point, defining a so-called depth-first
search.

The three possible colors of each node reflect if it is
unvisited (white), visited but unexplored (grey) or com-
pletely explored (black).

Breadth-First Search

BFS(G,s)
for each vertex u € V[G] — {s}
do color[u] = white
d[u] = oo, ie. the distance from s
plu] = NIL, ie. the parent in the DFS tree
color[u] = grey
d[s] =0
p[s] = NIL
Q = {s}
while Q # 0
do u = head[Q]
for each uinAdj[u]
do if color[v] = white then
color[v] = gray
dlv] =d[u] + 1
plv] = u
enqueue[Q,V]
dequeue[Q]
color[u] = black

INCLUDE CLR PICTURE OF BFS IN ACTION!

Depth-First Search

DFS has a neat recursive implementation which elimi-
nates the need to explicitly use a stack.

Discovery and final times are sometimes a convenience
to maintain.

ENTER DFS ALGORITHM
INCLUDE CLR PICTURE OF DFS IN ACTION!

