23.1-5 The square of a directed graph G=(V,E) is the graph  $G^2=(V,E^2)$  such that  $(u,w)\in E^2$  iff for some  $v\in V$ , both  $(u,v)\in E$  and  $(v,w)\in E$ ; ie. there is a path of exactly two edges.

Give efficient algorithms for both adjacency lists and matricies.

Given an adjacency matrix, we can check in constant time whether a given edge exists. To discover whether there is an edge  $(u,w) \in G^2$ , for each possible intermediate vertex v we can check whether (u,v) and (v,w) exist in O(1).

Since there are at most n intermediate vertices to check, and  $n^2$  pairs of vertices to ask about, this takes  $O(n^3)$  time.

With adjacency lists, we have a list of all the edges in the graph. For a given edge (u, v), we can run through all the edges from v in O(n) time, and fill the results into an adjacency matrix of  $G^2$ , which is initially empty.

It takes O(mn) to construct the edges, and  $O(n^2)$  to initialize and read the adjacency matrix, a total of O((n+m)n). Since  $n \leq m$  unless the graph is disconnected, this is usually simplified to O(mn), and is faster than the previous algorithm on sparse graphs.

Why is it called the square of a graph? Because the square of the adjacency matrix is the adjacency matrix of the square! This provides a theoretically faster algorithm.

#### **BFS** Trees

If BFS is performed on a connected, undirected graph, a tree is defined by the edges involved with the discovery of new nodes:



This tree defines a shortest path from the root to every other node in the tree.

The proof is by induction on the length of the shortest path from the root:

- Length = 1 First step of BFS explores all neighbors of the root. In an unweighted graph one edge must be the shortest path to any node.
- Length = s Assume the BFS tree has the shortest paths up to length s-1. Any node at a distance of s will first be discovered by expanding a distance s-1 node.

# The key idea about DFS

A depth-first search of a graph organizes the edges of the graph in a precise way.

In a DFS of an undirected graph, we assign a direction to each edge, from the vertex which discover it:



In a DFS of a directed graph, every edge is either a tree edge or a black edge.

In a DFS of a directed graph, no cross edge goes to a higher numbered or rightward vertex. Thus, no edge from 4 to 5 is possible:



# Edge Classification for DFS

What about the other edges in the graph? Where can they go on a search?

#### Every edge is either:

1. A Tree Edge



3. A Forward Edge to a decendant



2. A Back Edge to an ancestor



4. A Cross Edge to a different node



On any particular DFS or BFS of a directed or undirected graph, each edge gets classified as one of the above.

### **DFS** Trees

The reason DFS is so important is that it defines a very nice ordering to the edges of the graph.

In a DFS of an undirected graph, every edge is either a tree edge or a back edge.

Why? Suppose we have a forward edge. We would have encountered (4,1) when expanding 4, so this is a back edge.



Suppose we have a cross-edge



#### Paths in search trees

Where is the shortest path in a DFS?



It could use multiple back and tree edges, where BFS only used tree edges.

It could use multiple back and tree edges, where BFS only uses tree edges.

DFS gives a better approximation of the longest path than BFS.



The BFS tree can have height 1, independent of the length of the longest path.



The DFS must always have height >= log P, where P is the length of the longest path.

# Topological Sorting

A directed, acyclic graph is a directed graph with no directed cycles.



A topological sort of a graph is an ordering on the vertices so that all edges go from left to right.

Only a DAG can have a topological sort.



Any DAG has (at least one) topological sort.

# Applications of Topological Sorting

Topological sorting is often useful in scheduling jobs in their proper sequence. In general, we can use it to order things given constraints, such as a set of leftright constraints on the positions of objects.

Example: Dressing schedule from CLR.

Example: Identifying errors in DNA fragment assembly.

Certain fragments are constrained to be to the left or right of other fragments, unless there are errors.

| A D D A C | A B R A C A D A B R A |
|-----------|-----------------------|
| ABRAC     | ABRAC                 |
| ACADA     |                       |
|           | RACAD                 |
| ADABR     | ACADA                 |
| DABRA     | ADABR                 |
| RACAD     | DABRA                 |

Solution — build a DAG representing all the left-right constraints. Any topological sort of this DAG is a consistant ordering. If there are cycles, there must be errors.

A DFS can test if a graph is a DAG (it is iff there are no back edges - forward edges are allowed for DFS on directed graph).

### **Algorithm**

**Theorem**: Arranging vertices in decreasing order of DFS finishing time gives a topological sort of a DAG.

**Proof**: Consider any directed edge u, v, when we encounter it during the exploration of vertex u:

- ullet If v is white we then start a DFS of v before we continue with u.
- If v is grey then u, v is a back edge, which cannot happen in a DAG.
- ullet If v is black we have already finished with v, so f[v] < f[u].

Thus we can do topological sorting in O(n+m) time.

## **Articulation Vertices**

Suppose you are a terrorist, seeking to disrupt the telephone network. Which station do you blow up?



An articulation vertex is a vertex of a connected graph whose deletion disconnects the graph.

Clearly connectivity is an important concern in the design of any network.

Articulation vertices can be found in O(n(m+n)) – just delete each vertex to do a DFS on the remaining graph to see if it is connected.

# A Faster O(n+m) DFS Algorithm

**Theorem:** In a DFS tree, a vertex v (other than the root) is an articulation vertex iff v is not a leaf and some subtree of v has no back edge incident until a proper ancestor of v.



Leaves cannot be articulation vertices

The root is a special case since it has no ancestors.

X is an articulation vertex since the right subtree does not have a back edge to a proper ancestor.

**Proof:** (1) v is an articulation vertex  $\rightarrow v$  cannot be a leaf.

Why? Deleting v must seperate a pair of vertices x and y. Because of the other tree edges, this cannot happen unless y is a decendant of v.



v separating x,y implies there is no back edge in the subtree of y to a proper ancestor of v.

(2) Conditions  $\to v$  is a non-root articulation vertex. v separates any ancestor of v from any decendant in the appropriate subtree.

Actually implementing this test in O(n+m) is tricky – but believable once you accept this theorem.