
������ The square of a directed graph G � �V� E� is

the graph G� � �V� E�� such that �u� w� � E� i� for

some v � V � both �u� v� � E and �v� w� � E� ie� there is

a path of exactly two edges�

Give e	cient algorithms for both adjacency lists and

matricies�

Given an adjacency matrix� we can check in constant
time whether a given edge exists� To discover whether
there is an edge �u� w� � G�� for each possible interme�
diate vertex v we can check whether �u� v� and �v� w�
exist in O����

Since there are at most n intermediate vertices to
check� and n� pairs of vertices to ask about� this takes
O�n�� time�

With adjacency lists� we have a list of all the edges in
the graph� For a given edge �u� v�� we can run through
all the edges from v in O�n� time� and �ll the results
into an adjacency matrix of G�� which is initially empty�

It takes O�mn� to construct the edges� and O�n�� to
initialize and read the adjacency matrix� a total of
O��n � m�n�� Since n � m unless the graph is dis�
connected� this is usually simpli�ed to O�mn�� and is
faster than the previous algorithm on sparse graphs�

Why is it called the square of a graph	 Because the
square of the adjacency matrix is the adjacency ma�
trix of the square
 This provides a theoretically faster
algorithm�

BFS Trees
If BFS is performed on a connected� undirected graph�
a tree is de�ned by the edges involved with the discov�
ery of new nodes�

r

This tree de
nes a shortest path from the root to every

other node in the tree�

The proof is by induction on the length of the shortest
path from the root�

� Length � � First step of BFS explores all neigh�
bors of the root� In an unweighted graph one edge
must be the shortest path to any node�

� Length � s Assume the BFS tree has the shortest
paths up to length s��� Any node at a distance of
s will �rst be discovered by expanding a distance
s� � node�

The key idea about DFS
A depth��rst search of a graph organizes the edges of
the graph in a precise way�

In a DFS of an undirected graph� we assign a direction
to each edge� from the vertex which discover it�

1

2 6

3

4

5

1

2
3

4

5

6

In a DFS of a directed graph� every edge is either a
tree edge or a black edge�

In a DFS of a directed graph� no cross edge goes to a
higher numbered or rightward vertex� Thus� no edge
from � to
 is possible�

1 5

6

87

2

43

Edge Classi�cation for DFS
What about the other edges in the graph	 Where can
they go on a search	

Every edge is either�

3. A Forward Edge

4. A Cross Edge

to a different node

to a decendant1. A Tree Edge

2. A Back Edge

to an ancestor

On any particular DFS or BFS of a directed or undi�
rected graph� each edge gets classi�ed as one of the
above�

DFS Trees
The reason DFS is so important is that it de�nes a
very nice ordering to the edges of the graph�

In a DFS of an undirected graph� every edge is either

a tree edge or a back edge�

Why	 Suppose we have a forward edge� We would
have encountered ��� �� when expanding �� so this is a
back edge�

1

2

3 4

Suppose we have a cross�edge

1

2

3 4 6

5 When expanding 2, we would discover

5, so the tree would look like:

1

2

3
4 5

6

Paths in search trees
Where is the shortest path in a DFS	

s

r

It could use multiple
back and tree edges,
where BFS only used
tree edges.

It could use multiple back and tree edges� where BFS
only uses tree edges�

DFS gives a better approximation of the longest path
than BFS�

1

2

4

8

12

14

15
3 5 7 9 11 13

6
10

The BFS tree can have height 1,
independant of the length of the
longest path.

The DFS must always have height
>= log P, where P is the length of
the longest path.

Topological Sorting
A directed� acyclic graph is a directed graph with no
directed cycles�

DAG NON-DAG

A topological sort of a graph is an ordering on the
vertices so that all edges go from left to right�

Only a DAG can have a topological sort�

Any DAG has �at least one� topological sort�

Applications of Topological
Sorting

Topological sorting is often useful in scheduling jobs
in their proper sequence� In general� we can use it to
order things given constraints� such as a set of left�
right constraints on the positions of objects�

Example� Dressing schedule from CLR�

Example� Identifying errors in DNA fragment assembly�

Certain fragments are constrained to be to the left or
right of other fragments� unless there are errors�

A B R A C
A C A D A
A D A B R
D A B R A
R A C A D

A B R A C

R A C A D

A C A D A

A D A B R

D A B R A

A B R A C A D A B R A

Solution � build a DAG representing all the left�right
constraints� Any topological sort of this DAG is a con�
sistant ordering� If there are cycles� there must be
errors�

A DFS can test if a graph is a DAG �it is i� there are
no back edges � forward edges are allowed for DFS on
directed graph��

Algorithm
Theorem� Arranging vertices in decreasing order of
DFS �nishing time gives a topological sort of a DAG�

Proof� Consider any directed edge u� v� when we en�
counter it during the exploration of vertex u�

� If v is white � we then start a DFS of v before we
continue with u�

� If v is grey � then u� v is a back edge� which cannot
happen in a DAG�

� If v is black � we have already �nished with v� so
f �v� � f �u��

Thus we can do topological sorting in O�n�m� time�

Articulation Vertices
Suppose you are a terrorist� seeking to disrupt the tele�
phone network� Which station do you blow up	

An articulation vertex is a vertex of a connected graph
whose deletion disconnects the graph�

Clearly connectivity is an important concern in the de�
sign of any network�

Articulation vertices can be found in O�n�m � n�� �
just delete each vertex to do a DFS on the remaining
graph to see if it is connected�

A Faster O�n�m� DFS
Algorithm

Theorem� In a DFS tree� a vertex v �other than the
root� is an articulation vertex i� v is not a leaf and
some subtree of v has no back edge incident until a
proper ancestor of v�

X

The root is a special case since
it has no ancestors.

X is an articulation vertex since
the right subtree does not have
a back edge to a proper ancestor.

Leaves cannot be
articulation vertices

Proof� ��� v is an articulation vertex � v cannot be a
leaf�

Why	 Deleting v must seperate a pair of vertices x

and y� Because of the other tree edges� this cannot
happen unless y is a decendant of v�

X

Y

V

v separating x� y implies there is no back edge in the
subtree of y to a proper ancestor of v�

��� Conditions � v is a non�root articulation vertex� v
separates any ancestor of v from any decendant in the
appropriate subtree�

Actually implementing this test in O�n�m� is tricky �
but believable once you accept this theorem�

