23.1-5 The square of a directed graph G = (V,E) is
the graph G2 = (V,E?) such that (u,w) € E? iff for
somewv €V, both (u,v) € E and (v,w) € E; ie. there is
a path of exactly two edges.

Give efficient algorithms for both adjacency lists and
matricies.

Given an adjacency matrix, we can check in constant
time whether a given edge exists. To discover whether
there is an edge (u,w) € G2, for each possible interme-
diate vertex v we can check whether (u,v) and (v, w)
exist in O(1).

Since there are at most n intermediate vertices to
check, and n? pairs of vertices to ask about, this takes
O(n3) time.

With adjacency lists, we have a list of all the edges in
the graph. For a given edge (u,v), we can run through
all the edges from v in O(n) time, and fill the results
into an adjacency matrix of G2, which is initially empty.

It takes O(mn) to construct the edges, and O(n?) to
initialize and read the adjacency matrix, a total of
O((n + m)n). Since n < m unless the graph is dis-
connected, this is usually simplified to O(mn), and is
faster than the previous algorithm on sparse graphs.

Why is it called the square of a graph? Because the
square of the adjacency matrix is the adjacency ma-
trix of the square! This provides a theoretically faster
algorithm.



BFS Trees

If BFS is performed on a connected, undirected graph,
a tree is defined by the edges involved with the discov-

ery of new nodes:

e

This tree defines a shortest path from the root to every
other node in the tree.

The proof is by induction on the length of the shortest
path from the root:

e Length = 1 First step of BFS explores all neigh-
bors of the root. In an unweighted graph one edge
must be the shortest path to any node.

o [ength = s Assume the BFS tree has the shortest
paths up to length s—1. Any node at a distance of
s will first be discovered by expanding a distance
s — 1 node.



he key idea about DFS

A depth-first search of a graph organizes the edges of
the graph in a precise way.

In a DFS of an undirected graph, we assign a direction
to each edge, from the vertex which discover it:

0 s
2 \ & .
(3)

5
e 6
(5)

In a DFS of a directed graph, every edge is either a
tree edge or a black edge.

In a DFS of a directed graph, no cross edge goes to a
higher numbered or rightward vertex. Thus, no edge
from 4 to 5 is possible:

1 5

7 8



Edge Classification for DFS

What about the other edges in the graph? Where can
they go on a search?

Every edge is either:

3. A Forward Edge
1. A Tree Edge to a decendant @<I

©) O

to adifferent node O,
to an ancestor / \

i

On any particular DFS or BFS of a directed or undi-
rected graph, each edge gets classified as one of the
above.

Q/xo
2. A Back Edge / 4. A Cross Edge
/



DFS Trees

The reason DFS is so important is that it defines a
very nice ordering to the edges of the graph.

In a DFS of an undirected graph, every edge is either
a tree edge or a back edge.

Why? Suppose we have a forward edge. We would
have encountered (4,1) when expanding 4, so this is a
back edge.

1

34 W

Suppose we have a cross-edge

1

2 5 When expanding 2, we would discover
5, so the tree would look like:




Paths in search trees

Where is the shortest path in a DFS?

r

It could use multiple
back and tree edges,
where BFS only used
tree edges.

It could use multiple back and tree edges, where BFS
only uses tree edges.

DFS gives a better approximation of the longest path

than BFS.
The BFS tree can have height 1,
independant of the length of the
longest path.

12 The DFS must always have height
4 >= |og P, where P is the length of

the longest path.

15
1 35 7 9 11 3



Topological Sorting

A directed, acyclic graph is a directed graph with no

directed cycles.

A topological sort of a graph is an ordering on the
vertices so that all edges go from left to right.

Only a DAG can have a topological sort.

i

Any DAG has (at least one) topological sort.



Applications of Topological
Sorting
Topological sorting is often useful in scheduling jobs
in their proper sequence. In general, we can use it to

order things given constraints, such as a set of left-
right constraints on the positions of objects.

Example: Dressing schedule from CLR.
Example: Identifying errors in DNA fragment assembly.

Certain fragments are constrained to be to the left or
right of other fragments, unless there are errors.

ABRACADABRA

ABRAC

ABRAC
ACADA RACAD
ADABR ACADA
DABRA ADABR
RACAD DABRA

Solution — build a DAG representing all the left-right
constraints. Any topological sort of this DAG is a con-
sistant ordering. If there are cycles, there must be
errors.

A DFS can test if a graph is a DAG (it is iff there are
no back edges - forward edges are allowed for DFS on
directed graph).



Algorithm

Theorem: Arranging vertices in decreasing order of
DFS finishing time gives a topological sort of a DAG.

Proof. Consider any directed edge u,v, when we en-
counter it during the exploration of vertex u:

e If v is white - we then start a DFS of v before we
continue with w.

e If v is grey - then u,v is a back edge, which cannot
happen in a DAG.

e If v is black - we have already finished with v, so

flv] < flul.

Thus we can do topological sorting in O(n 4+ m) time.



Articulation Vertices

Suppose you are a terrorist, seeking to disrupt the tele-
phone network. Which station do you blow up?

O

An articulation vertex is a vertex of a connected graph
whose deletion disconnects the graph.

Clearly connectivity is an important concern in the de-
sign of any network.

Articulation vertices can be found in O(n(m + n)) —
just delete each vertex to do a DFS on the remaining
graph to see if it is connected.



A Faster O(n + m) DFS
Algorithm

Theorem: In a DFS tree, a vertex v (other than the
root) is an articulation vertex iff v is not a leaf and
some subtree of v has no back edge incident until a
proper ancestor of v.

Theroot is aspecia case since
it has no ancestors.

X isan articulation vertex since
the right subtree does not have
aback edge to a proper ancestor.

O

L eaves cannot be
articulation vertices

Proof: (1) v is an articulation vertex — v cannot be a
leaf.

Why? Deleting v must seperate a pair of vertices =z
and y. Because of the other tree edges, this cannot
happen unless y is a decendant of v.



v separating z,y implies there is no back edge in the
subtree of y to a proper ancestor of wv.

(2) Conditions — v is a non-root articulation vertex. v
separates any ancestor of v from any decendant in the
appropriate subtree.

Actually implementing this test in O(n 4+ m) is tricky —
but believable once you accept this theorem.



