
������ Give two more shortest path trees for the fol�

lowing graph�

3

6

5 3

6

2 7
42 1

s

u v

x y

Run through Dijkstra�s algorithm� and see where there
are ties which can be arbitrarily selected�

There are two choices for how to get to the third vertex
x� both of which cost ��

There are two choices for how to get to vertex v� both
of which cost ��

Lessons from the Backtracking
contest

� As predicted� the speed di�erence between the
fastest programs and average program dwarfed the
di�erence between a supercomputer and a micro�
computer� Algorithms have a bigger impact on
performance than hardware�

� Di�erent algorithms perform di�erently on di�er�
ent data� Thus even hard problemsmay be tractable
on the kind of data you might be interested in�

� None of the programs could e�ciently handle all
instances for n � 	
� We will �nd out why after
the midterm� when we discuss NP�completeness�

� Many of the fastest programs were very short and
simple �KISS
� My bet is that many of the en�
hancements students built into them actually showed
them down� This is where pro�ling can come in
handy�

� The fast programs were often recursive�

Winning Optimizations

� Finding a good initial solution via randomization
or heuristic improvement helped by establishing a
good upper bound� to constrict search�

� Using half the largest vertex degree as a lower
bound similarly constricted search�

� Pruning a partial permutation the instant an edge
was � the target made the di�erence in going from
�say
 � to ���

� Positioning the partial permutation vertices sepa�
rated by b instead of � meant signi�cantly earlier
cuto�s� since any edge does the job�

� Mirror symmetry can only save a factor of �� but
perhaps more could follow from partitioning the
vertices into equivalence classes by the same neigh�
borhood�

Shortest Paths

Finding the shortest path between two nodes in a graph
arises in many di�erent applications�

� Transportation problems � �nding the cheapest
way to travel between two locations�

� Motion planning � what is the most natural way
for a cartoon character to move about a simulated
environment�

� Communications problems � how look will it take
for a message to get between two places� Which
two locations are furthest apart� ie� what is the
diameter of the network�

Shortest Paths and Sentence
Disambiguation

In our work on reconstructing text typed on an �over�
loaded
 telephone keypad� we had to select which of
many possible interpretations was most likely�

�

�

Token

�

�

Token

�

�

Token

�

�

Token

������ ���� ��� ������

� � �
� � �� � �

�

�

Token

�

�

Token

�

�

Token

�

�

Token

������ ���� ��� ������

� � �
� � �� � �

� � � �
give

hive

of

me

a ping

ring

sing

give

hive

of

me

a ping

ring

sing

� �

GIVE ME A RING�

P
PPq �

��� P
PPq

INPUT

�

Blank Recognition

�

Candidate Construction

�

Sentence Disambiguating

�

OUTPUT

�

We constructed a graph where the vertices were the
possible words�positions in the sentence� with an edge
between possible neighboring words�

##

1

2

3

4

P(W /C)

P(W /C)

P(W /C)

P(W /C)

Code C1 Code C2 Code C 3

2P(W /C)

1P(W /C)2

2
2

2

12
12

P(W /W)

P(W /#)1
2

P(W /#)1
3

P(W /#)1
4

P(W /#)1
1

1P(W /C)1
1

12P(W /C)1

3P(W /C)1
1

14P(W /C)1

P(#/W)41

3

3

3

3
3

3

3

3

The weight of each edge is a function of the probability
that these two words will be next to each other in a
sentence� �hive me� would be less than �give me�� for
example�

The �nal system worked extremely well � identifying
over ��� of characters correctly based on grammatical
and statistical constraints�

Dynamic programming �the Viterbi algorithm
 can be
used on the sentences to obtain the same results� by
�nding the shortest paths in the underlying DAG�

Finding Shortest Paths

In an unweighted graph� the cost of a path is just the
number of edges on the shortest path� which can be
found in O�n�m
 time via breadth��rst search�

In a weighted graph� the weight of a path between two
vertices is the sum of the weights of the edges on a
path�

BFS will not work on weighted graphs because some�
times visiting more edges can lead to shorter distance�
ie� � � �� �� �� �� �� � � �
�

Note that there can be an exponential number of short�
est paths between two nodes � so we cannot report all
shortest paths e�ciently�

Note that negative cost cycles render the problem of
�nding the shortest path meaningless� since you can
always loop around the negative cost cycle more to
reduce the cost of the path�

Thus in our discussions� we will assume that all edge
weights are positive� Other algorithms deal correctly
with negative cost edges�

Minimum spanning trees are une�ected by negative
cost edges�

Dijkstra�s Algorithm

We can use Dijkstra�s algorithm to �nd the shortest
path between any two vertices s and t in G�

The correctness of Dijkstra�s algorithm is based on this�

� If s� � � � � x� � � � � t is the shortest path from s to t�
then s� � � � � x had better be the shortest path from
s to x � or else we could make it shorter�

� The distance from s to x will be less than than of
that from s to t� if all edges have positive weight�

This suggests a dynamic programming�like strategy�
where we store the distance from s to all nearby nodes�
and use them to �nd the shortest path to more distant
nodes�

The shortest path from s to s� d�s� s
 �
� If all edge
weights are positive� the smallest edge incident to s�
say �s� x
� de�nes d�s� x
�

We can use an array to store the length of the shortest
path to each node� Initialize each to � to start�

Soon as we establish the shortest path from s to a new
node x� we go through each of its incident edges to see
if there is a better way from s to other nodes thru x�

known� fsg
for i� � to n do dist�i� ��
for each edge �s� v
� dist�v� � d�s� v

last�s

while �last �� t

select v such that dist�v
 � minunknown dist�i

for each �v� x
� dist�x� � min�dist�x�� dist�v� � w�v� x

last�v

known � known � fvg

INCLUDE FIGURE OF EXAMPLES OF SHORTEST
PATH ALGORITHMS

Complexity � O�n�
 if we use adjacency lists and a
Boolean array to mark what is known�

This is essentially the same as Prim�s algorithm�

An O�m lgn
 implementation of Dijkstra�s algorithm
would be faster for sparse graphs� and comes from us�
ing a heap of the vertices �ordered by distance
� and
updating the distance to each vertex �if necessary
 in
O�lgn
 time for each edge out from freshly known ver�
tices�

Even better� O�n lgn�m
 follows from using Fibonacci
heaps� since they permit one to do a decrease�key op�
eration in O��
 amortized time�

All�Pairs Shortest Path

Notice that �nding the shortest path between a pair
of vertices �s� t
 in worst case requires �rst �nding the
shortest path from s to all other vertices in the graph�

Many applications� such as �nding the center or di�
ameter of a graph� require �nding the shortest path
between all pairs of vertices�

We can run Dijkstra�s algorithm n times �once from
each possible start vertex
 to solve all�pairs shortest
path problem in O�n�
� Can we do better�

Improving the complexity is an open question but there
is a super�slick dynamic programming algorithm which
also runs in O�n�
�

Dynamic Programming and
Shortest Paths

The four�step approach to dynamic programming is�

�� Characterize the structure of an optimal solution�

�� Recursively de�ne the value of an optimal solution�

	� Compute this recurrence in a bottom�up fashion�

�� Extract the optimal solution from computed infor�
mation�

From the adjacency matrix� we can construct the fol�
lowing matrix�

D�i� j� ��� if i �� j and �vi� vj
 is not in E

D�i� j� � w�i� j
� if �vi� vj
 � E

D�i� j� �
� if i� j

This tells us the shortest path going through no inter�
mediate nodes�

There are several ways to characterize the shortest
path between two nodes in a graph� Note that the
shortest path from i to j� i �� j� using at most M

edges consists of the shortest path from i to k using
at most M � � edges�W �k� j
 for some k�

This suggests that we can compute all�pair shortest
path with an induction based on the number of edges
in the optimal path�

Let d�i� j�m be the length of the shortest path from i

to j using at most m edges�

What is d�i� j���

d�i� j�� �
 if i� j

� � if i �� j

What if we know d�i� j�m�� for all i� j�

d�i� j�m � min�d�i� j�m���min�d�i� k�m��� w�k� j�

� min�d�i� k�m��� w�k� j�
�� 	 k 	 i

since w�k� k� �

This gives us a recurrence� which we can evaluate in a
bottom up fashion�

for i� � to n

for j � � to n

d�i� j�m ��
for k � � to n

d�i� j���Min� d�i� k�m� d�i� k�m��� d�k� j�

This is an O�n�
 algorithm just like matrix multiplica�
tion� but it only goes from m to m�� edges�

Since the shortest path between any two nodes must
use at most n edges �unless we have negative cost
cycles
� we must repeat that procedure n times �m � �
to n
 for an O�n�
 algorithm�

We can improve this to O�n� logn
 with the obser�
vation that any path using at most �m edges is the
function of paths using at most m edges each� This is
just like computing an � an�� x an��� So a logarithmic
number of multiplications su�ce for exponentiation�

Although this is slick� observe that even O�n� logn
 is
slower than running Dijkstra�s algorithm starting from
each vertex�

The Floyd�Warshall Algorithm

An alternate recurrence yields a more e�cient dynamic
programming formulation� Number the vertices from
� to n�

Let d�i� j�k be the shortest path length from i to j us�

ing only vertices from �� �� ���� k as possible intermediate

vertices�

What is d�j� j��� With no intermediate vertices� any
path consists of at most one edge� so d�i� j�� � w�i� j��

In general� adding a new vertex k� � helps i� a path
goes through it� so

d�i� j�k � w�i� j� if k �

� min�d�i� j�k��� d�i� k�k��� d�k� j�k��
 if k � �

Although this looks similar to the previous recurrence�
it isn�t� The following algorithm implements it�

do � w

for k � � to n

for i� � to n

for j � � to n

d�i� j�k �min�d�i� j�k��� d�i� k�k��� d�k� j�k��

This obviously runs in ��n�
 time� which asymptoti�

cally is no better than a calls to Dijkstra�s algorithm�

However� the loops are so tight and it is so short and

simple that it runs better in practice by a constant

factor�

