25.1-1 Give two more shortest path trees for the fol-
lowing graph:

Run through Dijkstra's algorithm, and see where there
are ties which can be arbitrarily selected.

There are two choices for how to get to the third vertex
z, both of which cost 5.

There are two choices for how to get to vertex v, both
of which cost 9.



Lessons from the Backtracking
contest

e As predicted, the speed difference between the
fastest programs and average program dwarfed the
difference between a supercomputer and a micro-
computer. Algorithms have a bigger impact on
performance than hardware!

e Different algorithms perform differently on differ-
ent data. Thus even hard problems may be tractable
on the kind of data you might be interested in.

e None of the programs could efficiently handle all
instances for n = 30. We will find out why after
the midterm, when we discuss NP-completeness.

e Many of the fastest programs were very short and
simple (KISS). My bet is that many of the en-
hancements students built into them actually showed
them down! This is where profiling can come in
handy.

e T he fast programs were often recursive.



Winning Optimizations

Finding a good initial solution via randomization
or heuristic improvement helped by establishing a
good upper bound, to constrict search.

Using half the largest vertex degree as a lower
bound similarly constricted search.

Pruning a partial permutation the instant an edge
was > the target made the difference in going from
(say) 8 to 18.

Positioning the partial permutation vertices sepa-
rated by b instead of 1 meant significantly earlier
cutoffs, since any edge does the job.

Mirror symmetry can only save a factor of 2, but
perhaps more could follow from partitioning the
vertices into equivalence classes by the same neigh-
borhood.



Shortest Paths

Finding the shortest path between two nodes in a graph
arises in many different applications:

e Transportation problems — finding the cheapest
way to travel between two locations.

e Motion planning — what is the most natural way
for a cartoon character to move about a simulated
environment.

e Communications problems — how look will it take
for a message to get between two places? Which
two locations are furthest apart, ie. what is the
diameter of the network.



Shortest Paths and Sentence
Disambiguation

In our work on reconstructing text typed on an (over-
loaded) telephone keypad, we had to select which of
many possible interpretations was most likely.

INPUT . #4483x63x2%7464% ...
'
Blank Recognition

Token Token Token Token
“sssa” “sa” 2 “Taea”

— e e e

Candidate Construction

Token Token Token Token
144837 “63” w2 174647
o—f o—f o—f D

I I
[ sive | [ o ] [« ] ping
hive me ring

Sentence Disambiguating

[oee o] T [
hive me ring
sing

OUTPUT GIVE ME A RING.

We constructed a graph where the vertices were the
possible words/positions in,the sentence, with an edge
between possible neighboring words.



The weight of each edge is a function of the probability
that these two words will be next to each other in a
sentence. ‘hive me’ would be less than ‘give me’, for
example.

The final system worked extremely well — identifying
over 99% of characters correctly based on grammatical
and statistical constraints.

Dynamic programming (the Viterbi algorithm) can be
used on the sentences to obtain the same results, by
finding the shortest paths in the underlying DAG.



Finding Shortest Paths

In an unweighted graph, the cost of a path is just the
number of edges on the shortest path, which can be
found in O(n 4+ m) time via breadth-first search.

In a weighted graph, the weight of a path between two
vertices is the sum of the weights of the edges on a
path.

BFS will not work on weighted graphs because some-
times visiting more edges can lead to shorter distance,

je.14+14+14+14+14+141<10.

Note that there can be an exponential number of short-
est paths between two nodes — so we cannot report all
shortest paths efficiently.

Note that negative cost cycles render the problem of
finding the shortest path meaningless, since you can
always loop around the negative cost cycle more to
reduce the cost of the path.

Thus in our discussions, we will assume that all edge
weights are positive. Other algorithms deal correctly
with negative cost edges.

Minimum spanning trees are uneffected by negative
cost edges.



Dijkstra’s Algorithm

We can use Dijkstra’s algorithm to find the shortest
path between any two vertices s and ¢t in G.

T he correctness of Dijkstra’s algorithm is based on this:

o If 5,...,2,...,t is the shortest path from s to ¢,
then s,...,xz had better be the shortest path from
s to x — or else we could make it shorter.

e T he distance from s to = will be less than than of
that from s to t, if all edges have positive weight.

This suggests a dynamic programming-like strategy,
where we store the distance from s to all nearby nodes,
and use them to find the shortest path to more distant
nodes.

The shortest path from s to s, d(s,s) = 0. If all edge
weights are positive, the smallest edge incident to s,
say (s,z), defines d(s,z).

We can use an array to store the length of the shortest
path to each node. Initialize each to oo to start.

Soon as we establish the shortest path from s to a new
node z, we go through each of its incident edges to see
if there is a better way from s to other nodes thru =.



known = {s}
for i =1 to n do dist[i] =
for each edge (s,v), dist[v] = d(s, v)
last=s
while (last # t)
select v such that dist(v) = Min,,known dist(z)
for each (v, z), dist[xz] = min(dist[z], dist[v] + w(v,z))
last=wv
known = known U {v}

INCLUDE FIGURE OF EXAMPLES OF SHORTEST
PATH ALGORITHMS

Complexity — O(n?) if we use adjacency lists and a
Boolean array to mark what is known.

This is essentially the same as Prim’s algorithm.

An O(mlgn) implementation of Dijkstra’s algorithm
would be faster for sparse graphs, and comes from us-
ing a heap of the vertices (ordered by distance), and
updating the distance to each vertex (if necessary) in
O(lgn) time for each edge out from freshly known ver-
tices.

Even better, O(nlgn+m) follows from using Fibonacci
heaps, since they permit one to do a decrease-key op-
eration in O(1) amortized time.



All-Pairs Shortest Path

Notice that finding the shortest path between a pair
of vertices (s,t) in worst case requires first finding the
shortest path from s to all other vertices in the graph.

Many applications, such as finding the center or di-
ameter of a graph, require finding the shortest path
between all pairs of vertices.

We can run Dijkstra’s algorithm n times (once from
each possible start vertex) to solve all-pairs shortest
path problem in O(n3). Can we do better?

Improving the complexity is an open question but there
is a super-slick dynamic programming algorithm which
also runs in O(n3).



Dynamic Programming and
Shortest Paths

The four-step approach to dynamic programming is:
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute this recurrence in a bottom-up fashion.

4. Extract the optimal solution from computed infor-
mation.

From the adjacency matrix, we can construct the fol-
lowing matrix:

DIJi, j] = oo, if < % 7 and (v;,v;) is not in E
Dl[i, 5] =0, ifi=7

This tells us the shortest path going through no inter-
mediate nodes.

There are several ways to characterize the shortest
path between two nodes in a graph. Note that the
shortest path from 2 to 5, «+ # 7, using at most M
edges consists of the shortest path from 2 to k using
at most M — 1 edges+W (k, j) for some k.



This suggests that we can compute all-pair shortest
path with an induction based on the number of edges
in the optimal path.

Let d[z, 7]™ be the length of the shortest path from 1
to 5 using at most m edges.

What is d[i, j]°7
d[i, j1°

Oifi=1
oo if 1 £ 3

What if we know d[:, j]™~ 1 for all 7,57

dfs,51™ = min(d[,5]™ ", min(d[i, k1™ + wlk, 5]))
min(d[i, k]™ " + w(k,5]),1 < k < i

since wlk,k] = 0

This gives us a recurrence, which we can evaluate in a
bottom up fashion:

fore=1ton
forg=1ton
d[i, j]™ = oo
fork=1ton
d[i, j]1°=Min( d[:, k]™, d[i,k]™"! 4 d[k, 5])

This is an O(n3) algorithm just like matrix multiplica-
tion, but it only goes from m to m 4+ 1 edges.



Since the shortest path between any two nodes must
use at most n edges (unless we have negative cost
cycles), we must repeat that procedure n times (m = 1
to n) for an O(n*) algorithm.

We can improve this to O(n3logn) with the obser-
vation that any path using at most 2m edges is the
function of paths using at most m edges each. This is
just like computing a”® = a™/2 x a™/2. So a logarithmic
number of multiplications suffice for exponentiation.

Although this is slick, observe that even O(n3logn) is
slower than running Dijkstra's algorithm starting from
each vertex!



The Floyd-Warshall Algorithm

An alternate recurrence yields a more efficient dynamic
programming formulation. Number the vertices from
1 to n.

Let d[i, j]* be the shortest path length from i to j us-
ing only vertices from 1,2, ...,k as possible intermediate
vertices.

What is d[j,7]°? W.ith no intermediate vertices, any
path consists of at most one edge, so d[i, j]1° = w[i, j].

In general, adding a new vertex k + 1 helps iff a path
goes through it, so

dls, 51 = wli,j]if k=0
min(d[i, 1%, d[i, k]* 1 4 d[k, 5] 1) if k> 1

Although this looks similar to the previous recurrence,
it isn’t. The following algorithm implements it:

d° = w
fork=1ton
fors=1ton
forg=1ton
dli, 51 = min(d[i, 51*~ 1, d[, k¥~ + d[k, j]* 1)



This obviously runs in ®&(n3) time, which asymptoti-
cally is no better than a calls to Dijkstra's algorithm.
However, the loops are so tight and it is so short and
simple that it runs better in practice by a constant

factor.



