36.5-5 Prove that Hamiltonian Path is NP-complete.

This is not a special case of Hamiltonian cycle! (G may
have a HP but not cycle)

The easiest argument says that G contains a HP but
no HC iff (z,y) in G such that adding edge (z,y) to G
causes to have a HC, so O(n?) calls to a HC function
solves HP.

The cleanest proof modifies the VC and HC reduction
from the book:

Start
® k-1
® sdector
: vertices
Stop

This has a Hamiltown path from start to stop
iff the orignal graph had a vertex cover of size k.

Approximating Vertex Cover

As we have seen, finding the minimum vertex cover is
N P-complete. However, a very simple strategy (heuris-
tic) can get us a cover at most twice that of the opti-
mal.

While the graph has edges
pick an arbitrary edge v,u
add both u and v to the cover
delete all edges incident on either v and v

If the graph is represented by an adjacency list this can
be implemented in O(m + n) time.

ADD PICTURES FROM CLR

This heuristic must always produce cover, since an
edge is only deleted when it is adjacent to a cover
vertex.

Further, any cover uses at least half as many vertices
as the greedy cover.

"N
.

Why? Delete all edges from the graph except the edges
we selected.

No two of these edges share a vertex. T herefore, any
cover of just these edges must include one vertex per
edge, or half the greedy cover!

Things to Notice

e Although the heuristic is simple, it is not stupid.
Many other seemingly smarter ones can give a far
worse performance in the worst case.

Example: Pick one of the two vertices instead of
both (after all, the middle edge is already covered)
The optimal cover is one vertex, the greedy heuris-
tic is two vertices, while the new/bad heuristic can
be as bad as n — 1.

e Proving a lower bound on the optimal solution is
the key to getting an approximation result.

e Making a heuristic more complicated does not nec-
essarily make it better. It just makes it more dif-
ficult to analyze.

e A post-processing clean-up step (delete any un-
ecessessary vertex) can only improve things in prac-
tice, but might not help the bound.

The Euclidean Traveling
Salesman

In the traditional version of TSP - a salesman wants
to plan a drive to visit all his customers exactly once
and get back home.

Euclidean geometry satisfies the triangle inequality, d(u, w) <

d(u,v) + d(v, w).

TSP remains hard even when the distances are Eu-
clidean distances in the plane.

\Y

Note that the cost of airfares is an example of a dis-
tance function which violates the triangle inequality.

However, we can approximate the optimal Euclidean
TSP tour using minimum spanning trees.

Claim: the cost of a MST is a lower bound on the
cost of a TSP tour.

Why? Deleting any edge from a TSP tour leaves a
path, which is a tree of weight at least that of the
MST!

If we were allowed to visit cities more than once, doing
a depth-first traversal of a MST, and then walking out
the tour specified is at most twice the cost of MST.
Why? We will be using each edge exactly twice.

Every edge is used exactly twice in the DFS tour: 1 —
2-1-3-5-8-5-9-5-3-6—-3—-1—-4-7—-10-—
7T—-11 -7 -4 — 1.

However, how can we avoid revisiting cities?

We can take a shortest path to the next unvisited ver-
tex. The improved touris 1 -2—-3-5—-8—-9—-6 —
4 -7 —-10—-11 — 1. Because we replaced a chain of
edges by the edge, the triangle inequality ensures the
tour only gets shorter. Thus this is still within twice
optimal!

37.1-3 Give an efficient greedy algorithm that finds an
optimal vertex cover of a tree in linear time.

In a vertex cover we need to have at least one vertex
for each edge.

Every tree has at least two leaves, meaning that there
is always an edge which is adjacent to a leaf. Which
vertex can we never go wrong picking? The non-leaf,
since it is the only one which can also cover other
edges!

After trimming off the covered edges, we have a smaller
tree. We can repeat the process until the tree as 0 or
1 edges. When the tree consists only of an isolated
edge, pick either vertex.

All leaves can be identified and trimmed in O(n) time
during a DFS.

Formal Languages and the
T heory of NP-completeness

The theory of NP-completeness is based on formal lan-
guages and Turing machines, and so we will must work
on a more abstract level than usual.

For a given alphabet of symbols > =0, 1, &, we can
form an infinite set of strings or words by arranging
them in any order: ‘&10’, ‘111111’,'&&&’, and ‘&’.

A subset of the set of strings over some alphabet is a
formal language.

Formal language theory concerns the study of how
powerful a machine you need to recognize whether a
string is from a particular language.

Example: Is the string a binary representation of a even
number? A simple finite machine can check if the last
symbol is zero:

No memory is required, except for the current state.

Observe that solving decision problems can be thought
of as formal language recognition. The problem in-
stances are encoded as strings and strings in the lan-
guage if and only if the answer to the decision problem
is YES!

What kind of machine is necessary to recognize this
language? A Turing Machine!

A Turing machine has a finite-state-control (its pro-
gram), a two way infinite tape (its memory) and a
read-write head (its program counter)

finite
State
control

] e

-3 -2-1 0 1 2 3 4 5 TAPE

So, where are we?

Each instance of an optimization or decision problem
can be encoded as string on some alphabet. The set
of all instances which return True for some problem
define a language.

Hence, any problem which solves this problem is equiva-
lent to a machine which recognizes whether an instance
is in the language!

The goal of all this is going to be a formal way to
talk about the set of problems which can be solved in
polynomial time, and the set that cannot be.

Non-deterministic Turing
Machines

Suppose we buy a guessing module peripherial for our
Turing machine, which looks at a Turing machine pro-
gram and problem instance and in polynomial time
writes something it says is an answer. To convince
ourselves it really is an answer, we can run another
program to check it.

Ex: The Travelling Salesman Problem

The guessing module can easily write a permutation
of the vertices in polynomial time. We can check if
it is correct by summing up the weights of the special
edges in the permutation and see that it is less than k.

finite
state
control

guessing
module
NN

TAPE

The class of languages which we can recognize in time
polynomial in the size of the string or a deterministic
Turing Machine (without guessing module) is called P.

The class of languages we can recognize in time poly-
nomial in the length of the string or a non-deterministic
Turing Machine is called NP.

Clearly, P € NP, since for any DTM program we can
run it on a non-deterministic machine, ignore what the
guessing module is doing, and it will just as fast.

P 7= NP

Observe that any NDTM program which takes time
P(n) can simulated in P(N)2F(") time on a determin-

istic machine, by running the checking program 2P(n)
times, once on each possible guessed string.

The $10,000 question is whether a polynomial time
simulation exists, or in other words whether P = NP~.
Do there exist languages which can be verified in poly-
nomial time and still take exponential time on deter-
ministic machines?

This is the most important question in computer sci-
ence. Since proving an exponential time lower bound
for a problem in NP would make us famous, we assume
that we cannot do it.

What we can do is prove that it is at least as hard
as any problem in NP. A problem in NP for which a
polynomial time algorithm would imply all languages in
NP are in P is called NP-complete.

Turing Machines and Cook's
T heorem

Cook’s Theorem proves that satisfiability is N P-complete
by reducing all non-deterministic Turing machines to
SAT.

Each Turing machine has access to a two-way infi-
nite tape (read/write) and a finite state control, which
serves as the program.

N " nite
program State

read/writehead ~ "program counter”

.3 -2-1 0 1 2 3 4 5 .. "memory"

A program for a non-deterministic TM is:

1. Space on the tape for guessing a solution and cer-
tificate to permit verification.

2. A finite set of tape symbols

3. A finite set of states © for the machine, including
the start state gg and final states Zyes, Zno

4. A transition function, which takes the current ma-
chine state, and current tape symbol and returns
the new state, symbol, and head position.

We know a problem is in NP if we have a NDTM
program to solve it in worst-case time p[n], where p is
a polynomial and n is the size of the input.

Cook’s Theorem - Satisfiability
IS NP-completel

Proof: We must show that any problem in NP is at
least as hard as SAT. Any problem in NP has a non-
deterministic TM program which solves it in polynomial
time, specifically P(n).

We will take this program and create from it an in-
stance of satisfiability such that it is satisfiable if and
only if the input string was in the language.

If satisfied, If not satisfied,
instance in instance not in
language \IanguageT
NDTM & Transform SAT
Input Tape to Solver
SAT

polynomial time transform

If a polynomial time transform exists, then SAT must
be NP-complete, since a polynomial solution to SAT
gives a polynomial time algorithm to anything in NP.

Our transformation will use boolean variables to main-
tain the state of the TM:

Variable | Rang Intended meaning

Qlz, 7l 0<1 At time z, M is in
0<k state ¢,

Hlz, 7] 0<1 At time ¢, the read-write head
—p(n <pln)+1 is scanning tape square j

S|z, 7, k] 0<1 At time 7, the contents of
—p(n) <pln)+1 tape square j is symbol S},
0<k

Note that there are rp(n) + 2p2(n) + 2p2(n)v literals, a

polynomial number if p(n) is polynomial.

We will how have to add clauses to ensure that these
variables takes or the values as in the TM computation.

INCLUDE CLAUSE FIGURE DESCRIPTION

The group 6 clauses enforce the transition function of
the machine.

If the read-write head is not on tape
square 5 at time z, it doesn’t change

There are O(p(2(n)) literals and O(p2(n)) clauses in all,
so the transformation is done in polynomial time!

Polynomial Time Reductions

A decision problem is NP-hard if the time complexity
on a deterministic machine is within a polynomial factor
of the complexity of any problem in NP.

A problem is NP-complete if it is NP-hard and in
NP. Cook’'s theorem proved SATISFIABILITY was
NP-hard by using a polynomial time reduction trans-
lating each problem in NP into an instance of SAT:

If satisfied, If not satisfied,
instancein instance notin

language %guage T

Polynomial
’\‘.ﬁggﬂ&‘-‘m transform SAT

NDTM & to SAT Solver
Input Tape

Since a polynomial time algorithm for SAT would imply
a polynomial time algorithm for everything in NP, SAT
is NP-hard. Since we can guess a solution to SAT, it
isin NP and thus NP-complete.

The proof of Cook’s Theorem, while quite clever, was
certainly difficult and complicated. We had to show
that all problems in NP could be reduced to SAT to
make sure we didn't miss a hard one.

But now that we have a known N P-complete problem
in SAT. For any other problem, we can prove it N P-
hard by polynomially transforming SAT to it!

Yes

T

All
Problem
in
NP

SAT

Problem

Problem
X
Solver

NN

Cook’s Theorem Polynomial Reduction
from SAT to X

!

No

Polynomial agorithm
means P=NP

Since the composition of two polynomial time reduc-
tions can be done in polynomial time, all we need show
is that SAT, ie. any instance of SAT can be translated
to an instance of z in polynomial time.

Finding the Optimal Spouse

. There are up to n possible candidates we will see
over our lifetime, one at a time.

. We seek to maximize our probability of getting the
single best possible spouse.

. Our assessment of each candidate is relative to
what we have seen before.

. We must decided either to marry or reject each
candidate as we see them. There is no going back
once we reject someone.

. Each candidate is ranked from 1 to n, and all per-
mutations are equally likely.

For example, if the input permutation is
(4,2,3,5,6,1)
we see (3,1,2) after three candidates.

Picking the first or last candidate gives us a probability
of 1/n of getting the best.

Since we seek maximize our chances of getting the
best, it never pays to pick someone who is not the
best we have seen.

The optimal strategy is clearly to sample some fraction
of the candidates, then pick the first one who is better
than the best we have seen.

But what is the fraction?

For a given fraction 1/f, what is the probability of
finding the best?

Suppose 7+ 1 is the highest ranked person in the first
n/f candidates. We win whenever the best candidate
occurs before any number from 2 to 7 in the last n(1 —
1/f)/f candidates.

There is a 1/ probability of that, so,

o (%)(1 ——)”

sz

In fact, the optimal is obtained by sampling the first
n/e candidates.

