
������ Prove that Hamiltonian Path is NP �complete�

This is not a special case of Hamiltonian cycle� �G may
have a HP but not cycle�

The easiest argument says that G contains a HP but
no HC i� �x� y� in G such that adding edge �x� y� to G
causes to have a HC� so O�n�� calls to a HC function
solves HP�

The cleanest proof modi�es the V C and HC reduction
from the book�

k-1
selector
vertices

This has a Hamiltown path from start to stop
iff the orignal graph had a vertex cover of size k.

Start

Stop

Approximating Vertex Cover

As we have seen� �nding the minimum vertex cover is
NP �complete� However� a very simple strategy �heuris�
tic� can get us a cover at most twice that of the opti�
mal�

While the graph has edges
pick an arbitrary edge v� u
add both u and v to the cover
delete all edges incident on either u and v

If the graph is represented by an adjacency list this can
be implemented in O�m	 n� time�

ADD PICTURES FROM CLR

This heuristic must always produce cover� since an
edge is only deleted when it is adjacent to a cover
vertex�

Further� any cover uses at least half as many vertices
as the greedy cover�

Why
 Delete all edges from the graph except the edges
we selected�

No two of these edges share a vertex� Therefore� any
cover of just these edges must include one vertex per
edge� or half the greedy cover�

Things to Notice

� Although the heuristic is simple� it is not stupid�
Many other seemingly smarter ones can give a far
worse performance in the worst case�

Example� Pick one of the two vertices instead of
both �after all� the middle edge is already covered�
The optimal cover is one vertex� the greedy heuris�
tic is two vertices� while the new�bad heuristic can
be as bad as n� ��

� Proving a lower bound on the optimal solution is
the key to getting an approximation result�

� Making a heuristic more complicated does not nec�
essarily make it better� It just makes it more dif�
�cult to analyze�

� A post�processing clean�up step �delete any un�
ecessessary vertex� can only improve things in prac�
tice� but might not help the bound�

The Euclidean Traveling
Salesman

In the traditional version of TSP � a salesman wants
to plan a drive to visit all his customers exactly once
and get back home�

Euclidean geometry satis�es the triangle inequality� d�u� w� �
d�u� v� 	 d�v�w��

TSP remains hard even when the distances are Eu�
clidean distances in the plane�

u

v

w

Note that the cost of airfares is an example of a dis�
tance function which violates the triangle inequality�

However� we can approximate the optimal Euclidean
TSP tour using minimum spanning trees�

Claim� the cost of a MST is a lower bound on the
cost of a TSP tour�

Why
 Deleting any edge from a TSP tour leaves a
path� which is a tree of weight at least that of the
MST�

If we were allowed to visit cities more than once� doing
a depth��rst traversal of a MST� and then walking out
the tour speci�ed is at most twice the cost of MST�
Why
 We will be using each edge exactly twice�

1

2
3

4

7

1110
6

98

5

Every edge is used exactly twice in the DFS tour� ��

� ������ �� ������ �� ���� �� �������
�� ��� �� �� ��

However� how can we avoid revisiting cities

We can take a shortest path to the next unvisited ver�
tex� The improved tour is � �
 � � � � � � � � � � �
� � � � �� � �� � �� Because we replaced a chain of
edges by the edge� the triangle inequality ensures the
tour only gets shorter� Thus this is still within twice
optimal�

������ Give an e�cient greedy algorithm that �nds an

optimal vertex cover of a tree in linear time�

In a vertex cover we need to have at least one vertex
for each edge�

Every tree has at least two leaves� meaning that there
is always an edge which is adjacent to a leaf� Which
vertex can we never go wrong picking
 The non�leaf�
since it is the only one which can also cover other
edges�

After trimming o� the covered edges� we have a smaller
tree� We can repeat the process until the tree as � or
� edges� When the tree consists only of an isolated
edge� pick either vertex�

All leaves can be identi�ed and trimmed in O�n� time
during a DFS�

Formal Languages and the
Theory of NP�completeness

The theory of NP�completeness is based on formal lan�
guages and Turing machines� and so we will must work
on a more abstract level than usual�

For a given alphabet of symbols � ��� �� �� we can
form an in�nite set of strings or words by arranging
them in any order� ������ ��������������� and ����

A subset of the set of strings over some alphabet is a
formal language�

Formal language theory concerns the study of how
powerful a machine you need to recognize whether a
string is from a particular language�

Example� Is the string a binary representation of a even
number
 A simple �nite machine can check if the last
symbol is zero�

1

1

0

0

0
1

No memory is required� except for the current state�

Observe that solving decision problems can be thought
of as formal language recognition� The problem in�
stances are encoded as strings and strings in the lan�
guage if and only if the answer to the decision problem
is YES�

What kind of machine is necessary to recognize this
language
 A Turing Machine�

A Turing machine has a �nite�state�control �its pro�
gram�� a two way in�nite tape �its memory� and a
read�write head �its program counter�

TAPE-3 -2 -1 0 1 2 3 4 5

head

finite
state
control

So� where are we�

Each instance of an optimization or decision problem
can be encoded as string on some alphabet� The set
of all instances which return True for some problem
de�ne a language�

Hence� any problemwhich solves this problem is equiva�
lent to a machine which recognizes whether an instance
is in the language�

The goal of all this is going to be a formal way to
talk about the set of problems which can be solved in
polynomial time� and the set that cannot be�

Non�deterministic Turing
Machines

Suppose we buy a guessing module peripherial for our
Turing machine� which looks at a Turing machine pro�
gram and problem instance and in polynomial time
writes something it says is an answer� To convince
ourselves it really is an answer� we can run another
program to check it�

Ex� The Travelling Salesman Problem

The guessing module can easily write a permutation
of the vertices in polynomial time� We can check if
it is correct by summing up the weights of the special
edges in the permutation and see that it is less than k�

TAPE

finite
state
control

guessing
module

The class of languages which we can recognize in time
polynomial in the size of the string or a deterministic
Turing Machine �without guessing module� is called P �

The class of languages we can recognize in time poly�
nomial in the length of the string or a non�deterministic
Turing Machine is called NP �

Clearly� P � NP � since for any DTM program we can
run it on a non�deterministic machine� ignore what the
guessing module is doing� and it will just as fast�

P �� NP

Observe that any NDTM program which takes time
P �n� can simulated in P �N�
P�n� time on a determin�

istic machine� by running the checking program
P�n�

times� once on each possible guessed string�

The ������� question is whether a polynomial time
simulation exists� or in other words whether P � NP
�
Do there exist languages which can be veri�ed in poly�
nomial time and still take exponential time on deter�
ministic machines

This is the most important question in computer sci�
ence� Since proving an exponential time lower bound
for a problem in NP would make us famous� we assume
that we cannot do it�

What we can do is prove that it is at least as hard
as any problem in NP � A problem in NP for which a
polynomial time algorithm would imply all languages in
NP are in P is called NP �complete�

Turing Machines and Cook�s
Theorem

Cook�s Theoremproves that satis�ability is NP �complete
by reducing all non�deterministic Turing machines to
SAT �

Each Turing machine has access to a two�way in��
nite tape �read�write� and a �nite state control� which
serves as the program�

-3 -2 -1 0 1 2 3 4 5

finite
state
control

read/write head "program counter"

"program"

...... "memory"

A program for a non�deterministic TM is�

�� Space on the tape for guessing a solution and cer�
ti�cate to permit veri�cation�

� A �nite set of tape symbols

�� A �nite set of states � for the machine� including
the start state q� and �nal states Zyes� Zno

�� A transition function� which takes the current ma�
chine state� and current tape symbol and returns
the new state� symbol� and head position�

We know a problem is in NP if we have a NDTM
program to solve it in worst�case time p�n�� where p is
a polynomial and n is the size of the input�

Cook�s Theorem � Satis�ability
is NP�complete�

Proof� We must show that any problem in NP is at
least as hard as SAT� Any problem in NP has a non�
deterministic TM programwhich solves it in polynomial
time� speci�cally P �n��

We will take this program and create from it an in�
stance of satis�ability such that it is satis�able if and
only if the input string was in the language�

NDTM &

Input Tape

Transform
 to
 SAT

SAT

Solver

If satisfied,
instance in
language

If not satisfied,
instance not in
language

polynomial time transform

If a polynomial time transform exists� then SAT must
be NP �complete� since a polynomial solution to SAT
gives a polynomial time algorithm to anything in NP �

Our transformation will use boolean variables to main�
tain the state of the TM�

Variable Range Intended meaning
Q�i� j� � � i � p�n� At time i� M is in

� � k � r state qk
H�i� j� � � i � p�n� At time i� the read�write head

�p�n� � j � p�n� � 	 is scanning tape square j
S�i� j� k� � � i � p�n� At time i� the contents of

�p�n� � j � p�n� � 	 tape square j is symbol Sk
� � k � v

Note that there are rp�n�	
p��n�	
p��n�v literals� a
polynomial number if p�n� is polynomial�

We will now have to add clauses to ensure that these
variables takes or the values as in the TM computation�

INCLUDE CLAUSE FIGURE DESCRIPTION

The group � clauses enforce the transition function of
the machine� If the read�write head is not on tape
square j at time i� it doesn�t change ����

There are O�p���n�� literals and O�p��n�� clauses in all�
so the transformation is done in polynomial time�

Polynomial Time Reductions

A decision problem is NP �hard if the time complexity
on a deterministic machine is within a polynomial factor
of the complexity of any problem in NP �

A problem is NP �complete if it is NP �hard and in
NP � Cook�s theorem proved SATISFIABILITY was
NP �hard by using a polynomial time reduction trans�
lating each problem in NP into an instance of SAT�

SAT

Solver

instance in
language

If satisfied, If not satisfied,
instance not in
language

Input Tape
NDTM &

NP problem
instance:

Polynomial
transform

to SAT

Since a polynomial time algorithm for SAT would imply
a polynomial time algorithm for everything in NP � SAT
is NP �hard� Since we can guess a solution to SAT� it
is in NP and thus NP �complete�

The proof of Cook�s Theorem� while quite clever� was
certainly di�cult and complicated� We had to show
that all problems in NP could be reduced to SAT to
make sure we didn�t miss a hard one�

But now that we have a known NP �complete problem
in SAT� For any other problem� we can prove it NP �
hard by polynomially transforming SAT to it�

 All
Problem
 in
 NP

SAT
 X

Problem
Problem
 X

Solver

Yes

No
Cook’s Theorem Polynomial Reduction

from SAT to X
Polynomial algorithm
means P=NP

Since the composition of two polynomial time reduc�
tions can be done in polynomial time� all we need show
is that SAT� ie� any instance of SAT can be translated
to an instance of x in polynomial time�

Finding the Optimal Spouse

�� There are up to n possible candidates we will see
over our lifetime� one at a time�

� We seek to maximize our probability of getting the
single best possible spouse�

�� Our assessment of each candidate is relative to
what we have seen before�

�� We must decided either to marry or reject each
candidate as we see them� There is no going back
once we reject someone�

�� Each candidate is ranked from � to n� and all per�
mutations are equally likely�

For example� if the input permutation is

���
� �� ���� ��

we see ��� ��
� after three candidates�

Picking the �rst or last candidate gives us a probability
of ��n of getting the best�

Since we seek maximize our chances of getting the
best� it never pays to pick someone who is not the
best we have seen�

The optimal strategy is clearly to sample some fraction
of the candidates� then pick the �rst one who is better
than the best we have seen�

But what is the fraction	

For a given fraction ��f � what is the probability of
�nding the best

Suppose i	� is the highest ranked person in the �rst
n�f candidates� We win whenever the best candidate
occurs before any number from
 to i in the last n���
��f��f candidates�

There is a ��i probability of that� so�

P �

�X

i
	

�
	

f
����

	

f
�i

i

In fact� the optimal is obtained by sampling the �rst
n�e candidates�

