Problem 2.1-2: Show that for any real constants a and $b, b>0$,

$$
(n+a)^{b}=\Theta\left(n^{b}\right)
$$

To show $f(n)=\Theta(g(n))$, we must show O and Ω. Go back to the definition!

- Big O - Must show that $(n+a)^{b} \leq c_{1} \cdot n^{b}$ for all $n>n_{0}$. When is this true? If $c_{1}=2$, this is true for all $n>|a|$ since $n+a<2 n$, and raise both sides to the b.
- Big Ω - Must show that $(n+a)^{b} \geq c_{2} \cdot n^{b}$ for all $n>n_{0}$. When is this true? If $c_{2}=1 / 2$, this is true for all $n>|a|$ since $n+a>n / 2$, and raise both sides to the b.

Note the need for absolute values.

Problem 2.1-4:
(a) Is $2^{n+1}=O\left(2^{n}\right)$?
(b) Is $2^{2 n}=O\left(2^{n}\right) ?$
(a) Is $2^{n+1}=O\left(2^{n}\right)$?

$$
\begin{aligned}
& \text { Is } 2^{n+1} \leq c * 2^{n} ? \\
& \text { Yes, if } c \geq 2 \text { for all } n
\end{aligned}
$$

(b) Is $2^{2 n}=O\left(2^{n}\right)$?

$$
\begin{aligned}
& \text { Is } 2^{2 n} \leq c * 2 n ? \\
& \text { note } 2^{2 n}=2^{n} * 2^{n} \\
& \text { Is } 2^{n} * 2^{n} \leq c * 2^{n} ? \\
& \text { Is } 2^{n} \leq c \text { ? }
\end{aligned}
$$

No! Certainly for any constant c we can find an n such that this is not true.

